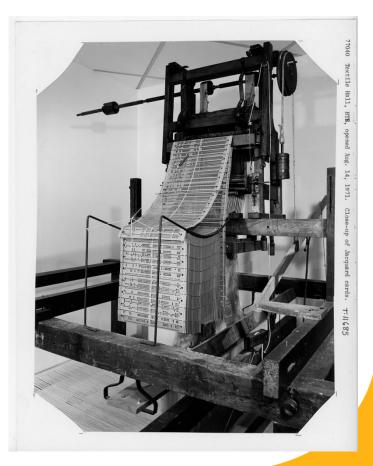
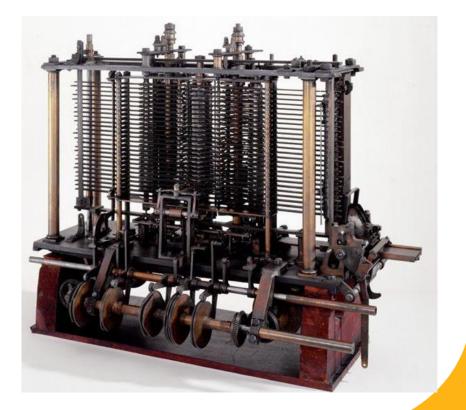
R INRC - KL-FN F DER LEKLER

Introduction


CMSC 313: Assembly Language and Computer Organization

Raphael Elspas

Programming the Loom

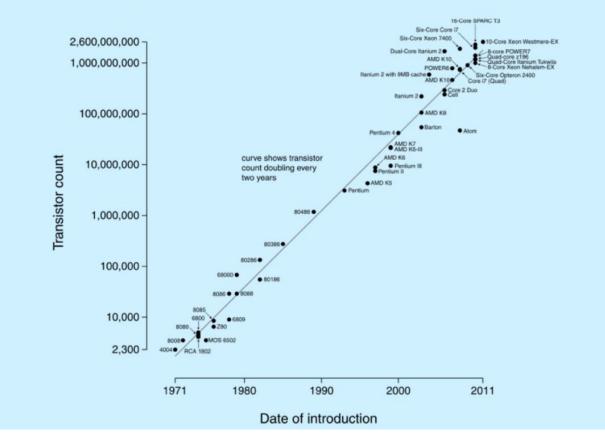

• 1801: Joseph Marie Jacquard invents a loom that uses punch cards to automate designs woven into fabric. Early computers continued this design by also using punch cards.

Analytical Engine

- 1821: Charles Babbage designs steam driven calculating machine that could produce polynomial coefficients - "Difference Engine".
- 1837: "Analytical Engine" could perform any kind of calculation had memory, an ALU, branching, & was theoretically turingcomplete
- Lost funding before being completed

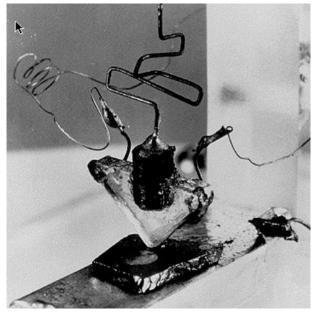
First Computer Program

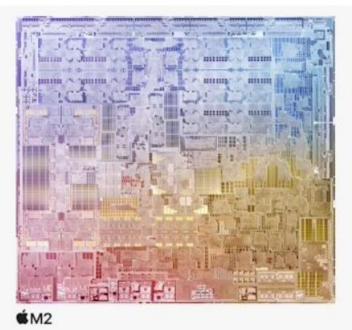
• 1843: Ada wrote a step-by-step description for calculating Bernoulli Numbers using the "Analytical Engine". Used memory for recursion.


	1	ad everying	Indication of change in the value on my Veriable.	Systement of Revolts.	Deta.			Working Yarishim.											Brieft Variables.		
Netare of Operation	Fastable seted upon.				5000	FOeen N	2000× B	10000 [£0000	50000 D	50000 [0000 [5.0000			5°00.0	Yu	20 deciralO2	Cimil O	Ju Balon Og	N Casa [w]
			$\left\{ \begin{matrix} {}^{1}V_{2} = {}^{0}V_{2} \\ {}^{1}V_{3} = {}^{0}V_{3} \\ {}^{1}V_{4} = {}^{0}V_{4} \\ {}^{1}V_{4} = {}^{0}V_{4} \\ {}^{1}V_{3} = {}^{0}V_{3} \\ {}^{1}V_{3} = {}^{0}V_{3} \end{matrix} \right\}$	- 7		2	•	2 m 2 m - 1	2 1	24						Ē					10000
+		PT 13	$ \begin{cases} \mathbf{v}_{1}^{*} = \mathbf{v}_{1}^{*} \\ \mathbf{v}_{2}^{*} = \mathbf{v}_{2}^{*} \\ \mathbf{v}_{1}^{*} = \mathbf{v}_{2}^{*} \\ \mathbf{v}_{1}^{*} = \mathbf{v}_{2}^{*} \\ \mathbf{v}_{2}^{*} = \mathbf{v}_{2}^{*} \\ \mathbf{v}_{2}^{*} = \mathbf{v}_{2}^{*} \\ \mathbf{v}_{1}^{*} = \mathbf{v}_{1}^{*} \end{cases} $	$=\frac{2n-1}{2n+1}$ $=\frac{1}{2}\cdot\frac{2n-1}{2n+1}$ $=\frac{1}{2}\cdot\frac{2n-1}{2n+1}$	-	- 1		•	•						$\frac{\frac{2n-1}{2n+1}}{\frac{1}{2},\frac{2n-1}{2n+1}}$						
-	$r_{13} - r_{1}$ $r_{13} = r_{1}$	*V20	$\left\{\begin{smallmatrix} v\mathbf{Y}_{11}=v\mathbf{Y}_{12}\\ v\mathbf{Y}_{1}=v\mathbf{Y}_{1}\\ v\mathbf{Y}_{1}=v\mathbf{Y}_{1}\end{smallmatrix}\right\}$	$= -\frac{1}{2} \cdot \frac{1}{2+1} = \lambda_0$ = + -1 (= 3)	1	-			14	1 1	-		1 1		0		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}-A_{n}$				
+	"T + "Y	W	$\begin{cases} {}^{1}Y_{1}=N_{2}\\ {}^{2}\gamma_{1}=N_{1}\\ {}^{2}\gamma_{2}=N_{1}\\ {}^{2}\gamma_{3}=N_{3}\\ {}^{2}\gamma_{$	= 2 + 0 = 2 $= \frac{2\pi}{2} = \lambda_1$ $= B_1 \cdot \frac{2\pi}{2} = B_1 \lambda_1$	1 1	1	1 1			- 24	2	1 1			$\frac{\frac{2}{2}}{\frac{2}{3}} = \lambda_1$ $\frac{2}{3} = \lambda_2$	B1. 24 - B1 A					
+ -	Tu+N.		$\begin{cases} {}^{1}Y_{11} = {}^{2}Y_{12} \\ {}^{1}Y_{13} = {}^{2}Y_{13} \\ {}^{1}Y_{13} = {}^{2}Y_{13} \\ {}^{1}Y_{13} = {}^{2}Y_{13} \\ {}^{1}Y_{1} = {}^{2}Y_{1} \end{cases}$	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + n_1 \cdot \frac{2n}{2} =$ = $n - 2(-2)$		111	1.1			1 1		1 1					$\left\{-\frac{1}{2},\frac{2n-1}{2n+1}+3,\frac{2n}{2}\right\}$	D.,			
112	1011	, re,	$ \left\{ \begin{matrix} {}^{1}V_{4}={}^{2}V_{4}\\ {}^{2}V_{1}={}^{2}V_{1}\\ {}^{2}V_{1}={}^{2}V_{1}\\ {}^{2}V_{1}={}^{2}V_{1}\\ {}^{2}V_{2}={}^{2}V_{2} \end{matrix} \right\} $	-2x-1	1		10.4			2=-1	3										-
	- 17 - 17 - 17 - 17		$\left\{ \begin{matrix} 1 V_1 & -2 V_2 \\ 1 V_2 & -2 V_2 \\ 1 V_2 & -2 V_3 \\ 1 V_3 & -2 V_3 \\ 1 V_3 & -2 V_3 \\ 1 V_3 & -2 V_3 \end{matrix} \right\}$	$=\frac{\frac{3}{2}}{\frac{2}{7}}\cdot\frac{2\times-1}{\frac{3}{5}}$		1 1 1				2n-1 	-	3 0		-	$\frac{2n}{T}, \frac{2n-1}{2}$	1				10	
	+ 11, + 11 + 11, + 11		121212	=3+1=4 $=\frac{2+-2}{4}$ $=\frac{2}{2}, 2+-1, 2+-2$	1	1.1			-		:	-	2	-	$\left\{\frac{\frac{2n}{2}}{\frac{2}{3}}\frac{\frac{2n-1}{3}}{\frac{2}{3}}\frac{\frac{2n-2}{3}}{\frac{2}{3}}\right\}$				11		
	< "V ₃ × "V < "V ₂ × "V + "V ₂ + "V	u ^{rg}	$\left\{ \begin{array}{c} \mathbf{t}_{\mathbf{Y}_{H}} = \mathbf{t}_{\mathbf{Y}_{H}} \\ \mathbf{t}_{\mathbf{Y}_{H}} = \mathbf{t}_{\mathbf{Y}_{H}} \\ \mathbf{t}_{\mathbf{Y}_{H}} = \mathbf{t}_{\mathbf{Y}_{H}} \\ \mathbf{t}_{\mathbf{Y}_{H}} = \mathbf{t}_{\mathbf{Y}_{H}} \end{array} \right\}$			1-1-1					-		•		0	0, A,		11	3,		
	- WW		$\left \left\{ \begin{matrix} v_1 & -v_2 \\ v_1 & -v_3 \\ v_4 & -v_4 \end{matrix} \right\} \right $	= = = 3 (= 1)	1	-			-			ntiens 1	hirteen	n - 3	ty-three.		$\left\{ A_2 + B_1 A_1 + H_2 A_2 \right\}$				
10	+ *V = + * + *T + *	2	$\left\{ \begin{matrix} v_{1} & v_{1} & v_{1} \\ v_{2} & v_{3} & v_{3} \\ v_{3} & v_{3} v_{3} & v_{3} \\ v_{3} & v_{3} & v_{3} \\ v_{3} & v_{3} \\ v_{3} & v_{3} & v_{3} \\ v_{3} & v_{3} \\$	$= B_7$ = + 1 = 4 + 1 = 5	1	1 1	+		-	0	-	-		-	******	-		PRAT	-	1	1

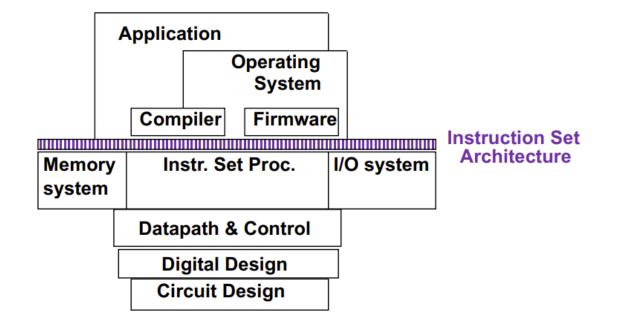
Moore's law and Dennard scaling

- Moore's Law: # of transistors integrated on a die doubles every 18-24 months (i.e., grows exponentially with time).
- Dennard Scaling: as transistors get smaller, their power density stays constant.
- Motivation to improve architecture (system level)

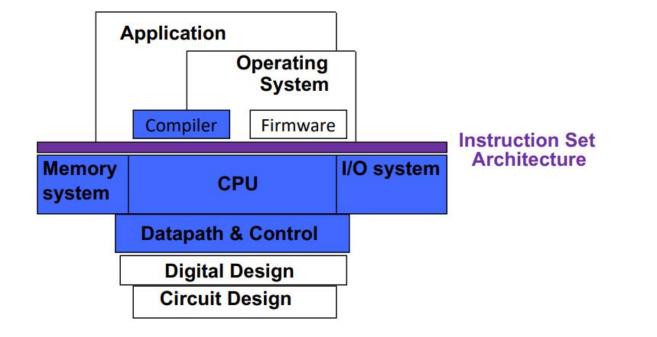

Microprocessor Transistor Counts 1971-2011 & Moore's Law


10000 Intel Pentium 4/3000 Performance (SPEC Int) DEC Alpha 21264A/667 Intel Xeon/2000 DEC Alpha 5/500 1000 DEC Alpha 21264/600 📮 DEC Alpha 5/300 IBM POWER 100 DEC Alpha 4/266 100 HP 9000/750 < DEC AXP/500 10 BM RS6000 MIPS M2000 SUN-4/260 MIPS M/120 1 1987 1989 1991 1993 1995 1997 1999 2001 2003 Year

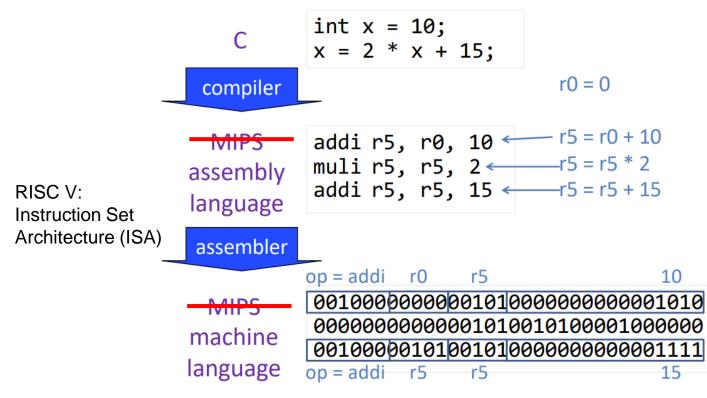
Then and Now


- The first Transistor
- One workbench at AT&T Bell Labs
- 1947: Bardeen, Brattain, and Shockley

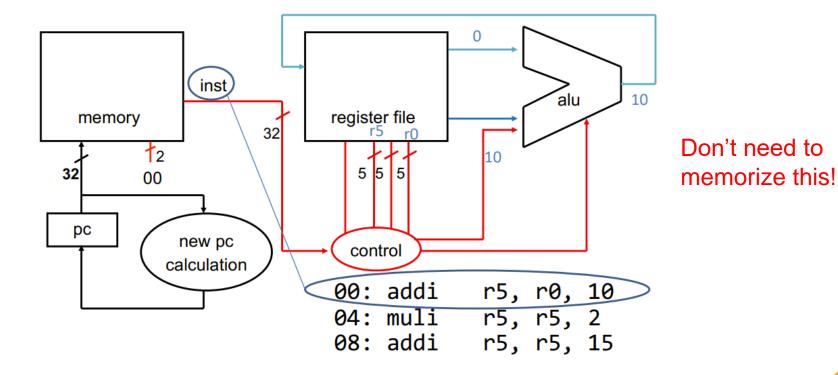
- Apple M2
- 10s of Billions of transistors



Overview



Covered in this course


 $\mathbf{R}(\cdot)$

Compilers and Assemblers

Simple Processor

References

- <u>https://www.cs.cornell.edu/courses/cs3410/2018fa/schedule/slides/01-intro.pdf</u>
- <u>https://www.britannica.com/biography/Joseph-Marie-Jacquard</u>
- <u>https://cse.umn.edu/cbi/who-was-charles-babbage</u>
- <u>https://www.newyorker.com/tech/annals-of-technology/ada-lovelace-the-first-tech-visionary</u>