Number Systems

CMSC 313: Assembly Language and Computer Organization

Raphael Elspas

Number Systems

- Radix: the base used in the numeric system
- Ex: "100" can be this many:

In base 2 (binary)

In base 10 (decimal)

In base 8 (octal)

General Definition

• In a system with radix *b* where b > 1, a string of digits $d_n \dots d_1$ denotes the number

$$d_{n}b^{n-1} + d_{n-1}b^{n-2} + \dots + d_{2}b^{1} + d_{1}b^{0}$$

where $0 \le d_i < b$.

- Notation: <Number>

base>
- Ex: 101 in base-2 is 101₂
- $2,384_{10} = 2 \times 10^3 + 3 \times 10^2 + 8 \times 10^1 + 4 \times 10^9$

Convert binary (base 2) to decimal:

- $101_2 = ?_{10}$
- = $1x2^2$ + $0x2^1$ + $1x2^0$

= 5₁₀

Convert decimal to binary:

• $115_{10} = ?_2$

 \div 2 = 57 Remainder 1 <- Least significant bit (LSB) \div 2 = 28 Remainder 1 \div 2 = 14 Remainder 0 \div 2 = 7 Remainder 0 \div 2 = 3 Remainder 1 \div 2 = 1 Remainder 1 \div 2 = 0 Remainder 1 <- Most significant bit (MSB)

1110011₂

Base 16 (Hexadecimal)

- 0,1,2,3,4,5,6,7,8,9, ...
- What comes next?
- A,B,C,D,E,F
- What comes next?
- 10,11,12, ... 19,
- What comes next?
- 1A, 1B, 1C, 1D, 1E, 1F
- What comes next?
- 20, 21, 22, ...

Convert Hexadecimal to decimal

• $3E7_{16} = 0x3E7 = ?_{10}$

R

 $3x16^{2} + Ex16^{1} + 7x16^{0}$ = $3x16^{2} + 14x16^{1} + 7x16^{0}$ = 768 + 224 + 7= 999

Convert base-r to base-s

Steps:

- 1. Convert base-r to base-10
- 2. Convert base-10 to base-s

Hex to Binary

Convert 82B ₁₆ to base 2											
82B ₁₆	=	8x16 ²	+	2x16 ¹	+	Bx16 ⁰					
	=	8x16 ²	+	2x16 ¹	+	11x16 ⁰					
	=	2048	+	32	+	11					

 $= 2091_{10}$

2091	÷	2	=	1045	Remainer	1	(LSB)
1045	÷	2	=	522	Remainer	1	
522	÷	2	=	261	Remainer	0	
261	÷	2	=	130	Remainer	1	
130	÷	2	=	65	Remainer	0	
65	÷	2	=	32	Remainer	1	
32	÷	2	=	16	Remainer	0	
16	÷	2	=	8	Remainer	0	
8	÷	2	=	4	Remainer	0	
4	÷	2	=	2	Remainer	0	
2	÷	2	=	1	Remainer	0	
1	÷	2	=	0	Remainer	1	(MSB)

 $1000 0010 1011_2$

Shortcut

- If *r* is a power of *s* or *s* is a power of *r*, you do not need to convert through base 10.
- Split each digit of *r* and expand/contract individually to base *s*.
- Example: r = 16, s = 2. Convert 82B₁₆ to base 2

1000 0010 1011 concatenate =100000101011₂

• Example: r = 16, s = 2. Convert 01011111010₂ to base 16

0101|1111|1010 5 F A append = 5FA

Why the Shortcut works

 $A3D_{16} = 10x16^{2} + 3x16^{1} + 13x16^{0}$ = $(1x2^{3} + 0x2^{2} + 1x2^{1} + 0x2^{0})x16^{2} + (0x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0})x16^{1} + (1x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0})$

> = $(1x2^3 + 0x2^2 + 1x2^1 + 0x2^0)x2^8 +$ $(0x2^3 + 0x2^2 + 1x2^1 + 1x2^0)x2^4 +$ $(1x2^3 + 1x2^2 + 0x2^1 + 1x2^0)$, by rewriting 16 as a power of 2.

$$= 1x2^{11} + 0x2^{10} + 1x2^{9} + 0x2^{8} + 0x2^{7} + 0x2^{6} + 1x2^{5} + 1x2^{4} + 1x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0} = 1010001111012.$$

A joke

There are 10 kinds of people in this world

- Those who understand binary
- Those who don't
- Those who didn't expect this joke to be in base 3

Definition extension for fractional numbers

• In a system with radix *b* where b > 1, a string of digits

Decimal place $d_1d_2 \dots d_{n-1}d_n \stackrel{\bullet}{\cdot} d_{n+1}d_{n+2} \dots d_{n+m-1}d_{n+m}$ denotes the number

$$d_{1}b^{n-1} + d_{2}b^{n-2} + \dots + d_{n-1}b^{1} + d_{n}b^{0} + d_{n+1}b^{-1} + d_{n+2}b^{-2} \dots + d_{n+m-1}b^{m-1} + d_{n+m}b^{m}$$

characteristic
where $0 \le d_{i} < b$.

• *integer-part (characteristic)* can be converted separate from the *fractional-part (mantissa)*

Between 0 and 1 – binary to decimal

• Convert 100.1101₂ to decimal

RCLEN

- $100_2 = 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$ = 4
- $0.1101_2 = 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4}$ = 0.5 + 0.25 + 0 + 0.0625= 0.8125
- 4 + 0.8125 = 4.8125_{10}

Between 0 and 1 – decimal to binary

 $112.\overline{2102}_{3}$

Summary

- Convert base-r to base-10
 - Splitting digits and multiplying by the value of their place
- Convert base-10 to base-r
 - Dividing for characteristic (integer part) and multiplying for mantissa (fractional part)
- Convert base-r to base-s by going through base-10
- Convert base-r to base-s with shortcut if r is a power of s or vice versa
- Convert fractional parts of number

References

- Nick Allgood's slides
- <u>https://www.cs.cornell.edu/courses/cs3410/2018fa/schedule/slides/03-numbers-and-arithmetic.pdf</u>
- <u>https://www.cs.ucf.edu/courses/cop3502/fall2011/Lectures/Lec7_BaseConver</u> <u>sion.pdf</u>