Digital Logic

CMSC 313
Raphael Elspas

Binary Logic definitions

- Binary variables take on one of two values.
- Logical operators operate on binary values and binary variables.
- Basic logical operators are the logic functions AND, OR and NOT.
- Logic gates implement logic functions.
- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as foundation for designing and analyzing digital systems!

Binary Variables

- Just like a regular variable, except takes only two values
- Recall that the two binary values have different names:
- True/False
- On/Off
- Yes/No
- $1 / 0$
- We use 1 and 0 to denote the two values.

Boolean Operators

- AND
- denoted by a dot (•) or two variables immediately next to each other.
- $Y=A \cdot B$ is read " Y is equal to A AND B."
- OR
- denoted by a plus (+).
- $\quad z=x+y$ is read " z is equal to x OR y."
- NOT
- denoted by an overbar (${ }^{-}$), a single quote mark (') after, or (~) before the variable.
- $\mathbf{X}=\overline{\mathbf{A}}$ is read " X is equal to NOT A."
- XOR
- Denoted by a plus with a circle (\oplus)

Truth Tables

AND		
X	Y	$X \cdot Y$
0	0	0
0	1	0
1	0	0
1	1	1

OR		
X	Y	$X+Y$
0	0	0
0	1	1
1	0	1
1	1	1

NAND		
X	Y	$\bar{X} \cdot Y$
0	0	1
0	1	1
1	0	1
1	1	0

NOR		
X	Y	$X+Y$
0	0	1
0	1	1
1	0	1
1	1	0

$X O R$		
X	Y	$X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

Gate Symbols

- Logic gates have special symbols:

$$
X Y=Z
$$

$$
\overline{X Y}=Z
$$

$$
X+Y=Z
$$

OR gate

$\overline{X+Y}=Z$

NOR gate

Representation

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

x	y	z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Order of Operations

- Order:

1. Parentheses
2. NOT
3. AND
4. OR

- Consequence: Parentheses appear around OR expressions
- Example: $\mathrm{F}=\mathrm{A}(\mathrm{B}+\mathrm{C})(\mathrm{C}+\overline{\mathrm{D}})$

1. $\overline{\mathrm{D}}:$ not
2. $B+C, C+\bar{D}$: parenthesis
3. $\mathrm{A}(\mathrm{B}+\mathrm{C})(\mathrm{C}+\overline{\mathrm{D}})$: and

Boolean Function Evaluation

$$
\begin{aligned}
& F 1=x y \bar{z} \\
& F 2=x+\bar{y} z \\
& F 3=\bar{x} \bar{y} \bar{z}+\bar{x} y z+x \bar{y} \\
& F 4=x \bar{y}+\bar{x} z
\end{aligned}
$$

x	y	z	$F 1$	$F 2$	$F 3$	$F 4$
0	0	0	0	0	1	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Logic Circuit Examples

- Example 1: Draw the circuit $X Y+Z=F$

- Example 2: Find the Boolean expression

The first logic gates must have been like:

Boolean Algebra Identities

1. $X+\mathbf{0}=X$	2. $X \cdot \mathbf{1}=X$	Identity
3. $X+1=1$	4. $X \cdot \mathbf{0}=\mathbf{0}$	Null Element
5. $X+X=X$	6. $X \cdot X=X$	Indempotence
7. $X+\bar{X}=1$	8. $\boldsymbol{X} \cdot \bar{X}=0$	Complement
9. $\overline{\bar{X}}=X$		Involution
10. $X+Y=Y+X$	11. $X \boldsymbol{Y} \boldsymbol{Y}=\boldsymbol{Y} \boldsymbol{X}$	Commutative
12. $(X+Y)+Z=X+(Y+Z)$	13. $(\boldsymbol{X Y}) \mathbf{Z}=\boldsymbol{X}(\mathbf{Y} \boldsymbol{Z})$	Associative
14. $X(Y+Z)=X Y+X Z$	15. $X+Y Z=(X+Y)(X+Z)$	Distributive
16. $\overline{X+Y}=\bar{X} \cdot \bar{Y}$	17. $\bar{X} \cdot \boldsymbol{Y}=\bar{X}+\bar{Y}$	DeMorgan's

Note: These are grouped as duals. The dual of an algebraic expression is obtained by interchanging + and • and interchanging 0's and 1 's.

Moar memes

Some guy named William

Me , an intellectual who understands Boolean algebra

How inefficient of him

Example 1: Boolean Algebraic Proof

- $A+A \cdot B=A \quad$ (Absorption Theorem)

Proof Steps

$$
\begin{aligned}
& A+A \cdot B \\
= & A \cdot 1+A \cdot B \\
= & A \cdot(1+B) \\
= & A \cdot 1 \\
= & A
\end{aligned}
$$

Justification (identity or theorem)

```
X=X - 1 (Identity)
X P Y + X F Z = X (Y + Z) (Distributive Law)
    1+X=1 (Null element)
    X}\cdot1=X\quad\mathrm{ (Identity)
```


Example 2: Boolean Algebraic Proofs

- $A B+\bar{A} C+B C=A B+\bar{A} C$ (Consensus Theorem)

Proof Steps
Justification (identity or theorem)

```
    AB}+\overline{A}\textrm{C}+\textrm{BC
= AB+\overline{AC}+1\cdotBC
= AB}+\overline{\mathbf{A}}\mathbf{C}+(\mathbf{A}+\overline{\mathbf{A}})\cdot\mathbf{BC
= AB + \overline{A}C+ABC + \overline{A}BC
= AB}+\mathbf{ABC}+\overline{\textrm{A}
= AB}\cdot\mathbf{1}+\textrm{ABC}+\overline{\textrm{A}}\cdot\mathbf{C}\cdot\mathbf{1}+\overline{\textrm{A}}\mathbf{C}\cdot\textrm{B
= AB(1+C)+\overline{AC}}\mathbf{(1+B
= AB}\cdot\mathbf{1}+\overline{\textrm{AC}}\cdot\mathbf{1}=\mathbf{AB}+\overline{\textrm{A}
```

(identity)
(complement)
(Distributive Law)
(Commutative Law)
(identity, Commutative Law)
(Distributive Law)
(identity)
 \title{
DeMorgan's Law
}
 \title{
DeMorgan's Law
}

$$
\overline{A \bullet B}=\bar{A}+\bar{B}
$$

$$
\overline{A+B}=\bar{A} \bullet \bar{B}
$$

Proof of DeMorgan's Laws (part 1)

- Show the truth table of left and right side match

$$
\overline{x+y}=\bar{x} \cdot \bar{y}
$$

x	y	$x+y$	$\overline{x+y}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x	y	\bar{x}	\bar{y}	$\overline{x y}$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

Proof of DeMorgan's Laws (part 2)

- Show the truth table of left and right side match

$$
\overline{x \cdot y}=\bar{x}+\bar{y}
$$

x	y	$x y$	$\overline{y y}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

x	y	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Useful Theorems

- Minimization
- $\quad X Y+\bar{X} Y=Y$
- $(X+Y)(\bar{X}+Y)=Y$
- Absorption
- $X+X Y=X$
- $X(X+Y)=X$
- Simplification
- $X+\bar{X} Y=X+Y$
- $X(\bar{X}+Y)=X Y$
- Consensus
- $A B+\bar{A} C+B C=A B+\bar{A} C$
- $(A+B)(\bar{A}+C)(B+C)=(A+B)(\bar{A}+C)$

Variables and Literals

- $F=x y+x \bar{y} z$
- There are $\mathbf{3}$ variables: $\mathrm{x}, \mathrm{y}, \mathrm{z}$
- There are 5 literals: $\mathbf{x}, \mathrm{y}, \mathrm{x}, \overline{\mathrm{y}}, \mathrm{z}$
- Includes complements and duplicates

Expression Simplification

- Simplify to contain the smallest number of literals.

Example: $\mathbf{A B}+\overline{\mathbf{A}} \mathbf{C D}+\overline{\mathbf{A}} \mathbf{B D}+\overline{\mathbf{A}} \mathbf{C} \overline{\mathbf{D}}+\mathbf{A B C D}$

$$
\begin{array}{ll}
=\mathrm{AB}+\mathrm{ABCD}+\overline{\mathrm{A}} \mathrm{CD}+\overline{\mathrm{A} C \bar{D}+\overline{\mathrm{A}} \mathrm{BD}} \\
=\mathrm{AB}(1+\mathrm{CD})+\overline{\bar{A}} \mathrm{C}(\mathrm{D}+\overline{\mathrm{D}})+\overline{\mathrm{A}} \mathrm{BD} & \text { (distributive) } \\
=\mathrm{AB}+\overline{\mathrm{A} C(D+\overline{\mathrm{D}})+\overline{\mathrm{A}} \mathrm{BD}} & \\
=\mathrm{AB} & \text { (Null Element) } \\
=\mathrm{AB}+\overline{\mathrm{A} C}+\overline{\mathrm{A}} \mathrm{BD} & \\
=\mathrm{A}(\mathrm{~A} D)+\overline{\mathrm{A}} \mathrm{C} & \\
\text { (Complement) } \\
\text { (distributive, commutative) }
\end{array}
$$

Complementing Functions

- Sometime useful for a circuit to use more AND then OR gates or vice versa
- Use DeMorgan's
- Example: Complement $\mathbf{F}=\overline{\mathbf{x}} \mathbf{y} \mathbf{z}+\mathbf{x} \overline{\mathbf{y}} \overline{\mathbf{z}}$

$$
\begin{aligned}
& \overline{\mathbf{F}}=\overline{\overline{\mathbf{x}} \mathbf{y} \mathbf{z}+\mathbf{x} \overline{\mathbf{y}} \overline{\mathbf{z}}} \\
& =(\overline{\overline{\mathbf{x}} \mathbf{y} \mathbf{z}})(\overline{\mathbf{x} \overline{\mathbf{y}} \overline{\mathbf{z}}}) \\
& =(\mathbf{x}+\overline{\mathbf{y}}+\mathbf{z})(\overline{\mathbf{y}}+\mathbf{y}+\mathbf{z})
\end{aligned}
$$

Complementing Circuits

- Bubble Pushing Steps:

1. Place bubble on output of circuit
2. Push bubbles from right to left (output to input) until all bubbles have been pushed to the inputs.
3. When pushing bubbles through a gate, add bubbles where there were none, and remove where there are. Then change gate from AND to OR and OR to AND.

$\equiv \quad B-0-W$

\equiv

$\equiv C \longrightarrow O-Y$

Bubble Pushing Example

Complement F using bubble pushing

Algebraic check:

$$
\begin{aligned}
& F=\overline{A B}+B C \\
& \bar{F}=\overline{\overline{A B}}+B C \\
& =(\overline{\overline{A B}})(\overline{B C}) \\
& =(A B)(\bar{B}+\bar{C})
\end{aligned}
$$

Answer

Duals and Self Dual

- A dual is an expression in which the
- OR and AND are exchanged and the
- 1s and 0s are exchanges
- A self dual is when $F=F^{D}$ where F^{D} is the dual of F.

Self Dual example

- Example: Is $\mathrm{ab}+\mathrm{bc}+\mathrm{ac}$ self dual?

$$
\begin{aligned}
& \mathrm{ab}+\mathrm{bc}+\mathrm{ac} \\
& =\overline{\overline{\mathrm{ab}+\mathrm{bc}+\mathrm{ac}}} \\
& =\overline{\overline{\bar{a}} \cdot \overline{b c} \cdot \overline{a c}} \\
& =\overline{(\bar{a}+\bar{b})(\bar{b}+\bar{c})(\bar{a}+\bar{c})} \\
& =\overline{(\bar{a} \bar{b}+\bar{a} \bar{c}+\bar{b} \bar{b}+\bar{b} \bar{c})(\bar{a}+\bar{c})} \\
& =\overline{\bar{a} \bar{b} \bar{a}+\bar{a} \bar{c} \bar{a}+\bar{b} \bar{b} \bar{a}+\bar{b} \bar{c} \bar{a}+\bar{a} \bar{b} \bar{c}+\bar{a} \bar{c} \bar{c}+\bar{b} \bar{b} \bar{c}+\bar{b} \bar{c} \bar{c}} \\
& =\overline{\bar{a} \bar{b}+\bar{a} \bar{c}+\bar{a} \bar{b} \bar{c}+\bar{b} \bar{c}} \\
& =\overline{\bar{a} \bar{b}+\bar{a} \bar{c}+\bar{b} \bar{c}} \\
& =\bar{a} \bar{b} \cdot \bar{a} \bar{c} \cdot \overline{\bar{b} \bar{c}} \\
& =(a+b)(a+c)(b+c) \text { Yes, it is a dual }
\end{aligned}
$$

(Involution)
(DeMorgan's)
(DeMorgan's)
(Distributive)
(Distributive) (Indempotence)
(Concensus theorem) (DeMorgan's)

Summary

- Logic operators: AND, OR, NOT, NAND, NOR, XOR
- Plug in values to circuit or Boolean expression find truth table
- Boolean identities allow you to simplify Boolean algebras

References

- https://www.cs.ucr.edu/~ehwang/courses/cs120a/00winter/minterms.pdf

Copywrite note

- Some of the content of these slides was derived from © 2004 by Pearson Education,Inc. from here:
https://redirect.cs.umbc.edu/courses/undergraduate/CMSC313/fall06/burt/slid es/LCDF3 Chap 02 P1.ppt
- Enough of the slides have been altered for the content on these slides to be considered fair use and not "derivative work".

