Canonical Logic Forms

CMSC 313
Raphael Elspas

Converting between expression and circuit

x	y	z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$
F=\bar{x} \bar{y}+x y \bar{z}
$$

Converting to truth table: plug in values!

x	y	z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

How to convert the other way?

x	y	z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Canonical Forms

- Boolean expressions that have a consistent form
- Each expression has a one to one correlation to a truth table
- Two kinds:
- Sum of minterms, Sum of Products (SOP)
- Product of Maxterms, Product of Sums (POS)
- Circuits that are shallower: logic has to pass through fewer circuits from input to output. This is faster because of gate delay.

minterm

- A minterm, denoted as $\boldsymbol{m}_{\mathrm{i}}$, where $0 \leq i<2^{n}$, is a product (AND) of the n variables in which each variable is
- complemented if the value assigned to it is $\mathbf{1}$, and
- uncomplemented if it is $\mathbf{0}$.
- m_{i} is associated with the ith row out of n rows in the truth table
- Any Boolean function can be expressed as a sum (OR) of its minterms.
- A sum of minterms is called Sum of Products (SOP)

minterms of 3 variables

- A shorthand notation:
F (list of variables) $=\Sigma$ (list of 1 -minterm indices)
- Example:

$$
\begin{aligned}
F & =\bar{x} y z+x \bar{y} z+x y \bar{z}+x y z \\
& =m_{3}+m_{5}+m_{6}+m_{7} \\
& =\sum(3,5,6,7)
\end{aligned}
$$

x	y	z	minterm	notation
0	0	0	$\bar{x} \bar{y} \bar{z}$	$\mathrm{~m}_{0}$
0	0	1	$\bar{x} \bar{y} z$	$\mathrm{~m}_{1}$
0	1	0	$\bar{x} y \bar{z}$	$\mathrm{~m}_{2}$
0	1	1	$\bar{x} y z$	$\mathrm{~m}_{3}$
1	0	0	$x \bar{y} \bar{z}$	$\mathrm{~m}_{4}$
1	0	1	$x \bar{y} z$	$\mathrm{~m}_{5}$
1	1	0	$x y \bar{z}$	$\mathrm{~m}_{6}$
1	1	1	$x y z$	$\mathrm{~m}_{7}$

Inverse of minterm

- The inverse of a sum of minterms is a sum of all the remaining minterms
- DeMorgan's application can be complicated
- Example: find inverse $\overline{\mathrm{F}}$

$$
\begin{aligned}
F & =\bar{x} y z+x \bar{y} z+x y \bar{z}+x y z \\
& =m_{3}+m_{5}+m_{6}+m_{7} \\
& =\sum(3,5,6,7) \\
\bar{F} & =m_{0}+m_{1}+m_{2}+m_{4} \\
& =\sum(0,1,2,4)
\end{aligned}
$$

x	y	z	minterm	F	F^{\prime}
0	0	0	$\bar{x} \bar{y} \bar{z}=\mathrm{m}_{0}$	0	1
0	0	1	$\bar{x} \bar{y} z=\mathrm{m}_{1}$	0	1
0	1	0	$\bar{x} y \bar{z}=\mathrm{m}_{2}$	0	1
0	1	1	$\bar{x} y z=\mathrm{m}_{3}$	1	0
1	0	0	$x \bar{y} \bar{z}=\mathrm{m}_{4}$	0	1
1	0	1	$x \bar{y} z=\mathrm{m}_{5}$	1	0
1	1	0	$x y \bar{z}=\mathrm{m}_{6}$	1	0
1	1	1	$x y z=\mathrm{m}_{7}$	1	0

Convert expression into SOP using a truth table

Example: $F=x+y z$

Step 1. Derive truth table

x	y	z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Step 2. Derive SOP

$$
\begin{aligned}
F & =m_{3}+m_{4}+m_{5}+m_{6}+m_{7} \\
& =\sum(3,4,5,6,7)
\end{aligned}
$$

Multiple Input Gates

- For AND gates with input set S , if all elements in S equal 1, then output is 1. Otherwise the output is 0 .

Convert SOP into circuit

Example: $F=m_{2}+m_{3}+m_{7}$ (for 3 variables)
Step 1. Derive truth table

x	y	z	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Step 2. Extract minterms
$F=\bar{x} y \bar{z}+\bar{x} y z+x y z$

Maxterm

- A Maxterm, denoted as M_{i}, where $0 \leq i<2^{n}$, is a sum (OR) of the n variables (literals) in which each variable is
- complemented if the value assigned to it is $\mathbf{1}$, and
- uncomplemented if it is $\mathbf{0}$.
- Note this is reverse of the definition for minterms
- Any Boolean function can be expressed as a product (AND) of its Maxterms.
- A product of Maxterms is called Products of Sums (POS)

Maxterms of 3 variables

- A shorthand notation:

F (list of variables) $=\Pi$ (list of Maxterm indices)

- Π is read "product of"
- Example: find Π notation of:

$$
\begin{aligned}
F= & (x+y+z)(x+y+\bar{z})(x+\bar{y}+z)(\bar{x}+y+z) \\
= & M_{0} M_{1} M_{2} M_{4} \\
& =\prod(0,1,2,4)
\end{aligned}
$$

x	y	z	Maxterm	notation
0	0	0	$x+y+z$	M_{0}
0	0	1	$x+y+\bar{z}$	M_{1}
0	1	0	$x+\bar{y}+z$	M_{2}
0	1	1	$x+\bar{y}+\bar{z}$	M_{3}
1	0	0	$\bar{x}+y+z$	M_{4}
1	0	1	$\bar{x}+y+\bar{z}$	M_{5}
1	1	0	$\bar{x}+\bar{y}+z$	M_{6}
1	1	1	$\bar{x}+\bar{y}+\bar{z}$	M_{7}

Maxterms of the zeros are the output!

$$
\begin{aligned}
F & =(x+y+z)(x+y+\bar{z})(x+\bar{y}+z)(\bar{x}+y+z) \\
& =M_{0} M_{1} M_{2} M_{4} \\
& =\prod(0,1,2,4)
\end{aligned}
$$

x	y	z	Maxterm	notation	F
0	0	0	$x+y+z$	M_{0}	0
0	0	1	$x+y+\bar{z}$	M_{1}	0
0	1	0	$x+\bar{y}+z$	M_{2}	0
0	1	1	$x+\bar{y}+\bar{z}$	M_{3}	1
1	0	0	$\bar{x}+y+z$	M_{4}	0
1	0	1	$\bar{x}+y+\bar{z}$	M_{5}	1
1	1	0	$\bar{x}+\bar{y}+z$	M_{6}	1
1	1	1	$\bar{x}+\bar{y}+\bar{z}$	M_{7}	1

Inverse of Maxterm

- The inverse of a product of Maxterms is a product of all the remaining Maxterms
- Example: Find $\overline{\mathrm{F}}$

$$
\begin{aligned}
F & =(x+y+z)(x+y+\bar{z})(x+\bar{y}+z)(\bar{x}+y+z) \\
& =M_{0} M_{1} M_{2} M_{4} \\
& =\prod(0,1,2,4) \\
\bar{F} & =M_{3} M_{5} M_{6} M_{7} \\
& =\prod(3,5,6,7)
\end{aligned}
$$

x	y	z	Maxterm	F	F
0	0	0	$x+y+z=\mathrm{M}_{0}$	0	1
0	0	1	$x+y+\bar{z}=\mathrm{M}_{1}$	0	1
0	1	0	$x+\bar{y}+z=\mathrm{M}_{2}$	0	1
0	1	1	$x+\bar{y}+\bar{z}=\mathrm{M}_{3}$	1	0
1	0	0	$\bar{x}+y+z=\mathrm{M}_{4}$	0	1
1	0	1	$\bar{x}+y+\bar{z}=\mathrm{M}_{5}$	1	0
1	1	0	$\bar{x}+\bar{y}+z=M_{6}$	1	0
1	1	1	$\bar{x}+\bar{y}+\bar{z}=\mathrm{M}_{7}$	1	0

Convert expression into POS using a truth table

Example: $F=x+y z$
Step 2. Derive POS
Step 1. Derive truth table

x	y	z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$
\begin{aligned}
F & =M_{0} M_{1} M_{2} \\
& =\prod(0,1,2)
\end{aligned}
$$

minterm and Maxterm

Example

$$
\begin{gathered}
F \begin{cases}F=\bar{x} y z+x \bar{y} z+x y \bar{z}+x y z= & m_{3}+m_{5}+m_{6}+m_{7}=\sum(3,5,6,7) \\
F=(x+y+z)(x+y+\bar{z})(x+\bar{y}+z)(\bar{x}+y+z)=M_{0} M_{1} M_{2} M_{4}=\prod(0,1,2,4)\end{cases} \\
\bar{F} \begin{cases}\bar{F}=\bar{x} \bar{y} \bar{z}+\bar{x} \bar{y} z+\bar{x} y \bar{z}+x \bar{y} \bar{z}= & m_{0}+m_{1}+m_{2}+m_{4}=\sum(0,1,2,4) \\
\bar{F}=(x+\bar{y}+\bar{z})(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})=M_{3} M_{5} M_{6} M_{7}=\prod(3,5,6,7)\end{cases}
\end{gathered}
$$

Are these (non-canonical) POS, SOP, both, neither?

- $\bar{a} b+c d$
- $c+\bar{a}$
- $(c+\bar{a})(d+\bar{a}+b)$
- $\quad(c+\bar{a}) d$
- $(c+\bar{a}) d b$
- $(c+\bar{a})(d b+\bar{a})$

SOP
SOP and POS
POS
POS
POS
neither

Circuits from minterms

$$
\begin{aligned}
\mathrm{F} & =m_{3}+m_{5}+m_{6}+m_{7} \\
& =\sum(3,5,6,7)
\end{aligned}
$$

x	y	z	minterm	F	F
0	0	0	$\bar{x} \bar{y} \bar{z}=\mathrm{m}_{0}$	0	1
0	0	1	$\bar{x} \bar{y} z=\mathrm{m}_{1}$	0	1
0	1	0	$\bar{x} y \bar{z}=\mathrm{m}_{2}$	0	1
0	1	1	$\bar{x} y z=\mathrm{m}_{3}$	1	0
1	0	0	$x \bar{y} \bar{z}=\mathrm{m}_{4}$	0	1
1	0	1	$x \bar{y} z=\mathrm{m}_{5}$	1	0
1	1	0	$x y \bar{z}=\mathrm{m}_{6}$	1	0
1	1	1	$x y z=\mathrm{m}_{7}$	1	0

Circuits from Maxterms

minterms vs Maxterms

- For n variables, if POS uses x terms, SOP will use 2^{n-x} terms.
- Tradeoff means simpler circuit, cheaper to manufacture
- Example: $\sum(0,1,2,3,4,6,7)=\Pi(5)$. POS is much simpler.

Self Duals

- Reminder: a Boolean expression is self dual if it equals its dual. A dual is produced by replacing all ANDs with ORs and vice versa and 1s with 0s.
- New definition: A Boolean expression is self dual if:

1. The expression is neutral, i.e. the number of minterms equals the number of Maxterms, and
2. The expression does not contain two mutually exclusive terms, e.g. $x y z$ and $\bar{x} \bar{y} \bar{z}$ are mutually exclusive because all the variables in one term are complemented in the other. $x \bar{y} z$ and $\bar{x} y \bar{z}$ are also mutually exclusive.

Self dual example

- Is $a \oplus b$ self dual?

1. Is the expression neutral?

a	b	$a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

Yes, 2 minterms, 2 Maxterms
2. The expression contains mutually exclusive terms: $a \oplus b=a \bar{b}+\bar{a} b$, minterms m_{1} and m_{2} are mutually exclusive since the variables in $a \bar{b}$ are complemented in the other: $\bar{a} b$.

Not self dual

Self dual example

- Is $F=\sum(3,5,6,7)$ self-dual?

x	y	z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1

F is an inverted mirror. Therefore, there are an equal number of minterms and maxterms, and no terms are mutually exclusive. Therefore, F is self dual.

Simplest form

- Is either a minterm SOP or a maxterm POS the expression with the fewest literals? The simplest expression?
- No!
- Karnaugh maps are used to find the simplest expression and therefore a minimal literals and gates

Summary

- Canonical Form used to convert truth table to consistent expression
- Sum of minterms, Sum of Products (SOP)
- Product of Maxterms, Product of Sums (POS)
- SOP and POS have inverse quantity of terms

References

- https://www.cs.ucr.edu/~ehwang/courses/cs120a/00winter/minterms.pdf

