Karnaugh Maps

CMSC 313 Raphael Elspas

Karnaugh Map

- A **Karnaugh Map** also known as a **K-map**, is a graphical method used for simplifying Boolean algebra expressions.
- It provides a systematic way to simplify logical expressions by grouping together adjacent cells in a table representing all possible combinations of input variables.

2-variable Karnaugh Maps

- Layout is a 2x2 grid, where the columns correspond with the values of one variable, and the rows correspond with the values of another variable.
- The values in the grid equal the output of the expression made up of the variable inputs

$$\begin{array}{c|cccc} A & B & 0 & 1 \\ 0 & A=0, & A=0, \\ B=0 & B=1 \\ 1 & A=1, & A=1, \\ B=0 & B=1 \end{array}$$

• Example: given truth table, draw Karnaugh map and find equation

• Example: given truth table, draw Karnaugh map and find equation

 $F = \overline{A} + B$

Note: groups can overlap. Choose the largest grouping you can in each direction. Must be a rectangle

3-variable Karnaugh Maps

- Layout is a 2x4 grid, where the columns correspond with the values of 2 variables, and the rows correspond with the values of the third variable.
- The values in the grid equal the output of the expression made up of the variable inputs

BC 00 01 11 10 А A=0, A=0, A=0, A=0, 0 B=0, B=0, B=1, B=1, C=1 C=0C=1 C=0A=1, A=1, A=1, A=1, B=0, 1 B=0. B=1, B=1, C=0C=1 C=1 C=0

Note the order of the bits: nonstandard order

• Example: given truth table, draw Karnaugh map and find equation

Gray Codes

- A **Gray code** is a sequencing of the binary numeral system in which two successive values differ in an only binary digits.
- Karnaugh maps use gray code ordering to allow wraparound grouping.

1-bit	2-bit	3-bit
0	00	000
1	01	001
	11	011
	10	010
		110
		111
		101
		100

Grouping Rules

- Must cover all of the 1s with as few groups as possible
- Groups must be a rectangle, no L shapes or diagonals.
- Groups must have dimensions that are powers of 2. 1 is a power of 2!
- Valid groups examples: 1x4, 8x2
- Invalid groups examples: 2x6, 1x3
- Groups can wrap around the edge of the K-Map since a gray code is used.
- Use the largest groups possible

Example: given truth table, draw Karnaugh map and find minimal equation

Note: gray code order

 $F = \overline{A}\overline{B} + \overline{A}C + \overline{B}C + AB\overline{C}$

• Example: given truth table, draw Karnaugh map and find minimal equation

• Example: given SOP, draw Karnaugh map and find equation

 $F = \sum (0, 1, 2, 4, 5, 6)$

 $F = \overline{B} + \overline{C}$

Note: groups can wrap around

• Example: given truth table, draw Karnaugh map and find equation

K-map complement

• To find the complement of a Boolean expression, we can circle 0s

4-variable Karnaugh Maps

- Layout is a 4x4 grid, where the columns correspond with the values of 2 variables, and the rows correspond with the values of the other 2 variables.
- The values in the grid equal the output of the expression made up of the variable inputs

4-variable Karnaugh Maps minterms

• The numbered minterms correspond with the spots on the 4-variable Karnaugh map as follows:

AB	D 00	01	11	10
00	m _o	m ₁	m ₃	m ₂
01	m ₄	m ₅	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m ₈	m ₉	m ₁₁	m ₁₀

Note: gray order for both rows and columns

• Maxterms occupy the spots in the same locations for each given input.

• Example: given SOP, draw Karnaugh map and find minimized equation

 $F = \bar{A}\bar{B} + B\bar{D} + \bar{B}CD$

• Example: given SOP, draw Karnaugh map and find minimized equation

 $F = \overline{B}\overline{D}$

• Example: given POS, draw Karnaugh map and find minimized equation

 $F = C + AB + A\overline{D}$

Karnaugh Map Complement

• Example: given SOP, draw Karnaugh map and find the minimized F and its minimized complement

 $F = \sum (2,3,4,5,7,10,13,15)$

$$\begin{split} F &= \bar{A}B\bar{C} + BD + \bar{A}\bar{B}C + \bar{B}C\bar{D} \\ \bar{F} &= \bar{A}\bar{B}\bar{C} + A\bar{C}\bar{D} + A\bar{B}D + BC\bar{D} \end{split}$$

Don't Cares

- A **don't care** term is an input for which the function output doesn't matter.
- We treat a don't care as either a 1 or a 0 depending on which is more advantageous.
- Represented as X. Some use "DC"
- **d(**2,3,7**)** means the 2nd 3rd and 7th rows in the truth table are "don't cares".

3-variable Don't care Karnaugh Map

• Example: given truth table, draw Karnaugh map and find equation

 $F = \bar{A}\bar{B} + AB$

4-variable don't care Karnaugh Map

• Example: Draw Karnaugh map and find minimized equation from:

 $\mathbf{F} = \sum (0,2,6,8) + d(10,11,12,13,14,15)$

$$F = \overline{B}\overline{D} + C\overline{D}$$

4-variable don't care Karnaugh Map

• Find minimized F and its complement

 $\mathbf{F} = \sum (0,1,4,10,11,14) + d(10,11,12,13,14,15)$

$$F = \overline{A}\overline{C} + AC$$
$$\overline{F} = BD$$

K-map POS

- Up till now, we have been circling 1s to build **SOP** Boolean expressions
- When we circle the 0s, we get the complement, and we also get the **POS**
- The complement of the **POS** can be found with the 1s, like the regular **SOP**.
- The inputs are numbered in the same way the Maxterms are organized

х	у	Z	Maxterm
0	0	0	$\mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{M}_0$
0	0	1	$x + y + \overline{z} = M_1$
0	1	0	$x + \overline{y} + z = M_2$
0	1	1	$x + \overline{y} + \overline{z} = M_3$
1	0	0	$\overline{\mathbf{x}} + \mathbf{y} + \mathbf{z} = \mathbf{M}_4$
1	0	1	$\overline{\mathbf{x}} + \mathbf{y} + \overline{\mathbf{z}} = \mathbf{M}_5$
1	1	0	$\overline{\mathbf{x}} + \overline{\mathbf{y}} + \mathbf{z} = M_6$
1	1	1	$\overline{\mathbf{x}} + \overline{\mathbf{y}} + \overline{\mathbf{z}} = \mathbf{M}_7$

K-map POS example

• Find the minimized **POS** for the given truth table

Note the format: this is a Product of Sums

$$F = (B + \bar{C})(\bar{A} + C)$$

K-map POS example

• Given SOP, draw Karnaugh map and find the minimized POS $F = \sum (3,4,5,6,7,13)$

$$F = (A + B + C)(B + D)(\overline{A} + D)(\overline{A} + C)$$

This seems long for a minimum POS? Consider what the expansion for $\prod(0,1,2,8,10,11,12,14,15)$ would be.

Summary

- K-maps allow us to find minimal Boolean expressions by diagraming groups over a grid
- Groups must be powers of 2 in length/width and can wrap around edges of K-map
- Find complement by grouping zeros
- Don't cares can be part of 1-groups or 0-groups
- Reduced format can be in SOP or POS.

References

- <u>https://steemit.com/logic/@drifter1/logic-design-from-function-to-circuit-using-</u> <u>multi-input-gates</u>
- <u>https://courses.cs.washington.edu/courses/cse370/09wi/LectureSlides/06-Karnaugh.pdf</u>
- <u>https://courses.cs.washington.edu/courses/cse370/99sp/lectures/02-</u> <u>Comb/sld043.htm</u>