Adders and other circuits

CMSC 313
Raphael Elspas

1-bit Adder logic

- Let's build a circuit which adds 2 bits: "a" \& "b" together.
- We need two bits to store the output, so we'll use a sum bit "s" and a carry bit "c".

a	b	c	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$
\begin{aligned}
& c=a b \\
& s=a \bar{b}+\bar{a} b=a \oplus b
\end{aligned}
$$

1-bit Adder circuits

- Input: a, b. Output: c, s

a	b	c	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$
\begin{aligned}
& c=a b \\
& s=a \bar{b}+\bar{a} b=a \bigoplus b
\end{aligned}
$$

Abstract it

- Let's put it in a box called a block diagram and call it a half-adder
- Half-Adder (HA) definition: adds two 1-bit values and produces a sum bit and a carry bit.
- A full adder should be able to have a carry in, not just a carry out

Full adder motivation

- We want to attach multiple 1-bit adders together to create many-bit adders
- To do this we need a carry-in bit that the previous block's carry-out bit would feed into.

Full Adder

- A Full Adder (FA) has 3 inputs: two 1 -bit values and a carry in, and 2 outputs: a sum bit and a carry bit.
- That means we need to add three 1-bit values

A	B	$C_{\text {in }}$	$C_{\text {out }}$	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

- Algebraically simplify
- Lets try to get similar statements to the Half adder to see if we can repurpose a half adder box.

A	B	$C_{i n}$	$C_{\text {out }}$	S		
0	0	0	0	0	$S=\bar{A} \bar{B} C_{\text {in }}+\bar{A} B \bar{C}_{\text {in }}+A \bar{B} \bar{C}_{\text {in }}+A B C_{\text {in }}$	$C_{\text {out }}=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C$
0	0	1	0	1	$=\bar{A}\left(\bar{B} C_{\text {in }}+B \bar{C}_{\text {in }}\right)+A\left(\bar{B} \bar{C}_{\text {in }}+B C_{\text {in }}\right)$	$=C(\bar{A} B+A \bar{B})+A B(\bar{C}+C)$
0	1	0	0	1		
0	1	1	1	0	$=\bar{A}\left(B \oplus C_{\text {in }}\right)+A\left(\overline{B \oplus C_{i n}}\right)$	$C_{\text {out }}=C(A \oplus B)+A B$
1	0	0	0	1		
1	0	1	1	0	$S=A \oplus B \oplus C_{\text {in }}$	
1	1	0	1	0		
1	1	1	1	1		

Full adder realized circuit

- Convert to a circuit

$$
\begin{aligned}
& S=A \oplus B \oplus C_{\text {in }} \\
& C_{\text {out }}=C_{\text {in }}(A \oplus B)+A B
\end{aligned}
$$

Full adder realized circuit

- Convert to a circuit

$$
\begin{aligned}
& S=A \oplus B \oplus C_{\text {in }} \\
& C_{\text {out }}=C_{\text {in }}(A \oplus B)+A B
\end{aligned}
$$

UN
thanos

Full adder

Half adder

Full Adder

- 3 Inputs: A, B, Carry in
- 2 outputs: Sum, Carry out
- Put it in a box!

Ripple Carry Adder

- Chain together Full Adders to add multiple bits
- $\mathrm{C}_{\mathrm{in}, 0}$ is set to 0 , since nothing is being carried in

Ripple Carry Adder example

- $A_{3} A_{2} A_{1} A_{0}=0110$
- $\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}=0011$

Result: 1001, Carry 0

Ripple Carry Adder - 2s complement

- Does this module work for $2 s$ complement?
- Yes! Because 2s complement uses regular addition
- But the number has to already be in 2 s complement form
- Lets try $-5+3$

Ripple Carry Adder - 2s complement example

(5) $0101 \rightarrow$ (inv) $\rightarrow 1010 \rightarrow(+1) \rightarrow 1011$

- $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}=1011$ (-5)
- $B_{3} B_{2} B_{1} B_{0}=0011$ (3)

Check: 1110 (2s complement)

$$
1101(-1)
$$

0010 (invert bits)
$=-2$

It works!

- Let's put it in a box

- $\mathrm{C}_{\text {in, } 1}-\mathrm{C}_{\mathrm{in}, 3}$ are internal variables, so they disappear

4-bit adder

4-bit adder another representation

Note

Means there are four wires herecalled a "bus"

8-bit adder from 4 bit adder

Adder-Subtractor

- In order to make a subtractor, we have to make a 2's complement converter.
- Then we'll reuse the adding circuit as before
- In order to do A - B, we'll convert the B to 2's complement - but we also want to be able to add $A+B$. We need a switch to turn subtracting on and off.
- In subtractor mode, we need to invert the bits in B and add 1
- We can make a controllable inverter with an XOR gate
- We can add 1 with the Carry-in to the first FA.

Adder-Subtractor implementation

Ripple Carry adder delay

Gate Delay

- Every gate incurs some delay as information passes through.
- We want to minimize circuit delay so that circuits are faster
- We measure worst delay from the critical path. This is the longest path from input to output in terms of number of gates traversed.

The two critical paths pass
through 3 OR gates

Ripple Carry adder delay

Full Adder

Critical Paths for Full Adder:
$A, B \rightarrow$ Cout: 3 gates
Cin \rightarrow Cout: 2 gates
A,B \rightarrow Sum: 2 gates
Cin \rightarrow Sum: 1 gate

Ripple Carry adder delay

All paths displayed

Full Adder

Paths for Full Adder:

Ripple Carry adder delay

Full Adder

Paths for Full Adder:

Idea: predict carry in advance

- Predict carry-in value in advance so numbers can be added in parallel
- $\mathrm{C}_{\mathrm{i}, \mathrm{i}, \mathrm{i}}$ for Full adder i relies on all input bits before it including A_{0} through $\mathrm{A}_{\mathrm{i}-1}$, B_{0} through $\mathrm{B}_{\mathrm{i}-1}$, and $\mathrm{C}_{\mathrm{in}, 0}$ through $\mathrm{C}_{\mathrm{in}, \mathrm{i}-1}$.
- All Carry in values are dependent on either A or B, so we can leave them out as part of the predictor logic.

Carry lookahead adder idea

Calculating each carry

- Remember how we calculate carry out in the Full Adder

$$
C_{\text {out }}=C_{\text {in }}(A \oplus B)+A B
$$

- We can find each of the carry bits this way, and create expressions that are dependent on previous values
- $C_{1}=C_{0}\left(A_{0} \oplus B_{0}\right)+A_{0} B_{0}$
- $C_{2}=C_{1}\left(A_{1} \oplus B_{1}\right)+A_{1} B_{1}$
- $C_{3}=C_{2}\left(A_{2} \oplus B_{2}\right)+A_{2} B_{2}$
- $C_{4}=C_{3}\left(A_{3} \oplus B_{3}\right)+A_{3} B_{3}$
(C4)

Carry algebra

For simplicity, Let-

- $G_{i}=A_{i} B_{i}$ where G is called carry generator
- $P_{i}=A_{i} \oplus B_{i}$ where P is called carry propagator

Therefore, we'll rewrite each $C_{i+1}=C_{i}\left(A_{i} \oplus B_{i}\right)+A_{i} B_{i}$ as

- $\mathrm{C}_{1}=\mathrm{C}_{0} \mathrm{P}_{0}+\mathrm{G}_{0}$
- $\mathrm{C}_{2}=\mathrm{C}_{1} \mathrm{P}_{1}+\mathrm{G}_{1}$
- $\mathrm{C}_{3}=\mathrm{C}_{2} \mathrm{P}_{2}+\mathrm{G}_{2}$
- $\mathrm{C}_{4}=\mathrm{C}_{3} \mathrm{P}_{3}+\mathrm{G}_{3}$

Carry algebra

- $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} are intermediate carry bits.
- So, let's remove $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} from RHS of every equation.
- Substituting $C_{1}=C_{0} P_{0}+G_{0}$ in for $C_{2}=C_{1} P_{1}+G_{1}$ we get C_{2} in terms of C_{0}.
- We can continue substituting so we get C_{3} in terms of C_{0} and so on.

Therefore we'll get

- $\mathrm{C}_{1}=\mathrm{C}_{0} \mathrm{P}_{0}+\mathrm{G}_{0} \leftarrow 3$ gates delay
- $\mathrm{C}_{2}=\mathrm{C}_{0} \mathrm{P}_{0} \mathrm{P}_{1}+\mathrm{G}_{0} \mathrm{P}_{1}+\mathrm{G}_{1} \leftarrow 3$ gates delay
- $\mathrm{C}_{3}=\mathrm{C}_{0} \mathrm{P}_{0} P_{1} P_{2}+\mathrm{G}_{0} P_{1} P_{2}+G_{1} P_{2}+G_{2} \leqslant 3$ gates delay
- $\mathrm{C}_{4}=\mathrm{C}_{0} \mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}+\mathrm{G}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}+\mathrm{G}_{1} \mathrm{P}_{2} \mathrm{P}_{3}+\mathrm{G}_{2} \mathrm{P}_{3}+\mathrm{G}_{3} \leftarrow 3$ gates delay

Carry Lookahead adder

Carry Lookahead adder

Carry Lookahead adder

Critical Path: 4 gates

Decoder (DEC)

- A Decoder is a circuit that has n inputs and 2^{n} outputs.
- A decoder converts a binary number $\mathrm{s}=\mathrm{s}_{\mathrm{n}-1} \mathrm{~s}_{\mathrm{n}-2} \ldots \mathrm{~s}_{1} \mathrm{~s}_{0}$, and produces a "1" on the decoded line F_{s}, and " 0 " on all other F output lines.
- Decoders are a combinational circuit that appear frequently in computer hardware and ALUs

Decoder example

If $\mathrm{s}_{1} \mathrm{~s}_{0}$ equals 10 , (or 2 in decimal), then F_{2} will equal 1 and the other Fs equal 0 .

2-bit Decoder (DEC)

s_{0}	$\mathrm{~s}_{1}$	$\mathrm{~F}_{0}$	$\mathrm{~F}_{1}$	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Multiplexer (MUX)

- A multiplexer (MUX) has n select bits " s " which allow you to select one of the 2^{n} input lines " I " to duplicate on the output line "out"
- Basically allows different inputs to share the same wire as an output
- Use a trapezoid to represent MUX

4-input MUX example

- If I select $s=10$, then I'm selecting the second line to be displayed on the output

4-input MUX example explanation

- 6 inputs, so truth table would have 64 rows
- We need an efficient way to design this

s_{1}	$\mathrm{~s}_{0}$	out
0	0	I_{0}
0	1	I_{1}
1	0	I_{2}
1	1	I_{3}

I

2-input gate level implementation MUX

s	I_{0}	I_{1}	out
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$
F=\bar{s} I_{0}+s I_{1}
$$

Chain MUXes

Easier than making 6 input Kmap (4 input, 2 select).

Demultiplexer (DEMUX)

- A demultiplexer (DEMUX) does the inverse of a MUX.
- A DEMUX has n select bits " s " which allow you to select one of the 2^{n} output lines to copy the input line to
- Basically allows an input to split an output on different wires.

S

DEMUX example

- If I select $s=10$, then I'm selecting the second line I_{2} to be displayed on the output
- All other outputs have nothing sent over them

DEMUX implementation

- Two different representation of the truth table

in	s_{1}	$\mathrm{~s}_{0}$	o_{0}	o_{1}	o_{2}	o_{3}
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

s_{1}	$\mathrm{~s}_{0}$	o_{0}	o_{1}	o_{2}	o_{3}
0	0	in	0	0	0
0	1	0	in	0	0
1	0	0	0	in	0
1	1	0	0	0	in

ALU

- Arithmetic logic unit (ALU) is a combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers.
a, b are integer operands c is an integer result d is an operation selector

\mathbf{N} : the width of the inputs and outputs of the ALU. M: the width of the operation selector. There are 2^{M} operations for a selector that has a width of M.

Summary

- Half adder IN(a,b) OUT($\mathrm{c}_{\text {out }}$, sum)
- Full adder IN(a,b, $\left.\mathrm{c}_{\text {in }}\right)$ OUT($\mathrm{c}_{\text {out }}$, sum)
- Carry lookahead adder reduces cumulative gate delay
- Decoder outputs a 1 on a specific wire, and 0 everywhere else
- Multiplexer and Demultiplexer convert multiple wires to share one line and the reverse respectively.

References

- https://www.gatevidyalay.com/tag/disadvantages-of-carry-look-ahead-adder/
- https://www.allaboutelectronics.org/half-adder-and-full-adder-explained/
- https://redirect.cs.umbc.edu/~tsimo1/CMSC313/topics/Slides21.pdf

