Adders and other circuits

CMSC 313 Raphael Elspas

1-bit Adder logic

- Let's build a circuit which adds 2 bits: "a" & "b" together.
- We need two bits to store the output, so we'll use a sum bit "s" and a carry bit "c".

- 1-bit Adder circuits
- Input: a, b. Output: c, s

а	b	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

c = ab $s = a\overline{b} + \overline{a}b = a \oplus b$

Abstract it

- Let's put it in a box called a **block diagram** and call it a half-adder
- Half-Adder (HA) definition: adds two 1-bit values and produces a sum bit and a carry bit.
- A full adder should be able to have a carry in, not just a carry out

Half-Adder Using XOR and AND

Full adder motivation

- We want to attach multiple 1-bit adders together to create many-bit adders
- To do this we need a carry-in bit that the previous block's carry-out bit would feed into.

Full Adder

- A Full Adder (FA) has 3 inputs: two 1-bit values and a carry in, and 2 outputs: a sum bit and a carry bit.
- That means we need to add three 1-bit values

А	В	\mathbf{C}_{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

- Algebraically simplify
- Lets try to get similar statements to the Half adder to see if we can repurpose a half adder box.

Α	В	\mathbf{C}_{in}	C _{out}	S		
0	0	0	0	0	$S = \overline{A} \overline{B} C_{in} + \overline{A} \overline{B} \overline{C}_{in} + \overline{A} \overline{B} \overline{C}_{in} + \overline{A} \overline{B} \overline{C}_{in} + \overline{A} \overline{B} C_{in}$	$C_{out} = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$
0	0	1	0	1		$C(\overline{A}\overline{D} + A\overline{D}) + AD(\overline{C} + C)$
0	1	0	0	1	= A (B C_{in} + B C_{in}) + A (B C_{in} + B C_{in})	= C(AB + AB) + AB(C + C)
0	1	1	1	0	$= \overline{A} (B \bigoplus C_{in}) + A (\overline{B \bigoplus C_{in}})$	$C_{out} = C(A \oplus B) + AB$
1	0	0	0	1		
1	0	1	1	0	$S = A \bigoplus B \bigoplus C_{in}$	
1	1	0	1	0		
1	1	1	1	1		

Full adder realized circuit

• Convert to a circuit

Full adder realized circuit

• Convert to a circuit

 $S = A \bigoplus B \bigoplus C_{in}$

 $C_{out} = C_{in} (A \bigoplus B) + AB$

thanos

Full adder

Half adder

Full Adder

- 3 Inputs: A, B, Carry in
- 2 outputs: Sum, Carry out
- Put it in a box!

Ripple Carry Adder

- Chain together Full Adders to add multiple bits
- C_{in,0} is set to 0, since nothing is being carried in

Ripple Carry Adder example

- $A_3A_2A_1A_0 = 0110$ (6)
- $B_3 B_2 B_1 B_0 = 0011$ (3)

Result: 1001, Carry 0

Check: 6+3 = 9

Ripple Carry Adder - 2s complement

- Does this module work for 2s complement?
- Yes! Because 2s complement uses regular addition
- But the number has to already be in 2s complement form
- Lets try -5 + 3

Ripple Carry Adder - 2s complement example

(5) 0101 \rightarrow (inv) \rightarrow 1010 \rightarrow (+1) \rightarrow 1011

- $A_3A_2A_1A_0 = 1011$ (-5)
- $B_3 B_2 B_1 B_0 = 0011$ (3)

It works!

• Let's put it in a box

• $C_{in,1}$ - $C_{in,3}$ are internal variables, so they disappear

4-bit adder

4-bit adder another representation

8-bit adder from 4 bit adder

Adder-Subtractor

- In order to make a subtractor, we have to make a 2's complement converter.
- Then we'll reuse the adding circuit as before
- In order to do A B, we'll convert the B to 2's complement but we also want to be able to add A + B. We need a switch to turn subtracting on and off.
- In subtractor mode, we need to invert the bits in B and add 1
 - We can make a controllable inverter with an XOR gate
 - We can add 1 with the Carry-in to the first FA.

Adder-Subtractor implementation

Gate Delay

- Every gate incurs some delay as information passes through.
- We want to minimize circuit delay so that circuits are faster
- We measure worst delay from the **critical path**. This is the longest path from input to output in terms of number of gates traversed.

The two critical paths pass through 3 OR gates

Critical Paths for Full Adder: $A,B \rightarrow Cout : 3 \text{ gates}$ $Cin \rightarrow Cout: 2 \text{ gates}$ $A,B \rightarrow Sum: 2 \text{ gates}$ $Cin \rightarrow Sum: 1 \text{ gate}$

Idea: predict carry in advance

- Predict carry-in value in advance so numbers can be added in parallel
- C_{in,i} for Full adder i relies on all input bits before it including A₀ through A_{i-1}, B₀ through B_{i-1}, and C_{in,0} through C_{in,i-1}.
- All Carry in values are dependent on either A or B, so we can leave them out as part of the predictor logic.

Carry lookahead adder idea

Calculating each carry

- Remember how we calculate carry out in the Full Adder
 C_{out} = C_{in} (A ⊕ B) + AB
- We can find each of the carry bits this way, and create expressions that are dependent on previous values
- $C_1 = C_0 (A_0 \bigoplus B_0) + A_0 B_0$
- $C_2 = C_1 (A_1 \bigoplus B_1) + A_1 B_1$
- $C_3 = C_2 (A_2 \bigoplus B_2) + A_2 B_2$
- $C_4 = C_3 (A_3 \bigoplus B_3) + A_3 B_3$

Carry algebra

For simplicity, Let-

- $G_i = A_i B_i$ where G is called carry generator
- $P_i = A_i \bigoplus B_i$ where P is called carry propagator

Therefore, we'll rewrite each $C_{i+1} = C_i (A_i \bigoplus B_i) + A_i B_i$ as

- $C_1 = C_0 P_0 + G_0$
- $C_2 = C_1 P_1 + G_1$
- $C_3 = C_2 P_2 + G_2$
- $C_4 = C_3 P_3 + G_3$

Carry algebra

- C₁, C₂ and C₃ are intermediate carry bits.
- So, let's remove C_1 , C_2 and C_3 from RHS of every equation.
- Substituting $C_1 = C_0P_0 + G_0$ in for $C_2 = C_1P_1 + G_1$ we get C_2 in terms of C_0 .
- We can continue substituting so we get C₃ in terms of C₀ and so on.

Therefore we'll get

- $C_1 = C_0 P_0 + G_0 \leftarrow 3$ gates delay
- $C_2 = C_0 P_0 P_1 + G_0 P_1 + G_1 \leftarrow 3$ gates delay
- $C_3 = C_0 P_0 P_1 P_2 + G_0 P_1 P_2 + G_1 P_2 + G_2 \leftarrow 3$ gates delay
- $C_4 = C_0 P_0 P_1 P_2 P_3 + G_0 P_1 P_2 P_3 + G_1 P_2 P_3 + G_2 P_3 + G_3 \leftarrow 3$ gates delay

Carry Lookahead adder

Carry Lookahead adder

Carry Lookahead adder

Decoder (DEC)

- A Decoder is a circuit that has n inputs and 2ⁿ outputs.
- A decoder converts a binary number s = s_{n-1}s_{n-2}...s₁s₀, and produces a "1" on the decoded line F_s, and "0" on all other F output lines.
- Decoders are a combinational circuit that appear frequently in computer hardware and ALUs

s
$$\xrightarrow{n}$$
 DEC $\xrightarrow{2^n}$ F

Decoder example

If s_1s_0 equals 10, (or 2 in decimal), then F_2 will equal 1 and the other Fs equal 0.

2-bit Decoder (DEC)

s ₀	S ₁	F ₀	F_1	F_2	F_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Multiplexer (MUX)

- A multiplexer (MUX) has n select bits "s" which allow you to select one of the 2ⁿ input lines "I" to duplicate on the output line "out"
- Basically allows different inputs to share the same wire as an output
- Use a trapezoid to represent MUX

4-input MUX example

• If I select s=10, then I'm selecting the second line to be displayed on the output

4-input MUX example explanation

- 6 inputs, so truth table would have 64 rows
- We need an efficient way to design this

Elon MUX

2-input gate level implementation MUX

Chain MUXes

Easier than making 6 input Kmap (4 input, 2 select).

Demultiplexer (DEMUX)

- A demultiplexer (DEMUX) does the inverse of a MUX.
- A DEMUX has n select bits "s" which allow you to select one of the 2ⁿ output lines to copy the input line to
- Basically allows an input to split an output on different wires.

DEMUX example

- If I select s=10, then I'm selecting the second line I₂ to be displayed on the output
- All other outputs have nothing sent over them

DEMUX implementation

• Two different representation of the truth table

Т

ir	า	s ₁	s_0	o ₀	0 ₁	0 ₂	0 ₃
	0	0	0	0	0	0	0
	0	0	1	0	0	0	0
	0	1	0	0	0	0	0
	0	1	1	0	0	0	0
	1	0	0	1	0	0	0
	1	0	1	0	1	0	0
	1	1	0	0	0	1	0
	1	1	1	0	0	0	1

0₃

0

0

in

ALU

• Arithmetic logic unit (ALU) is a combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers.

a,b are integer operands c is an integer result d is an operation selector

N: the width of the inputs and outputs of the ALU.
M: the width of the operation selector. There are 2^M operations for a selector that has a width of M.

Summary

- Half adder IN(a,b) OUT(c_{out}, sum)
- Full adder IN(a,b,c_{in}) OUT(c_{out}, sum)
- Carry lookahead adder reduces cumulative gate delay
- Decoder outputs a 1 on a specific wire, and 0 everywhere else
- Multiplexer and Demultiplexer convert multiple wires to share one line and the reverse respectively.

References

- <u>https://www.gatevidyalay.com/tag/disadvantages-of-carry-look-ahead-adder/</u>
- <u>https://www.allaboutelectronics.org/half-adder-and-full-adder-explained/</u>
- https://redirect.cs.umbc.edu/~tsimo1/CMSC313/topics/Slides21.pdf