UMBC

Adders and other circuits

CMSC 313
Raphael Elspas

UMBC

1-bit Adder logic

e Let’s build a circuit which adds 2 bits: “a” & “b” together.
e We need two bits to store the output, so we'll use a sum bit “s” and a

(1Pt

carry bit “c”.

c = ab
s=ab+ab=a®Pb

P, P O Ol
, O L O|T
P O O o|o
O L L O|wn

UMBC

1-bit Adder circuits
e Input: a, b. Output: c, s

Sum

e i I
B

P, P, O O|®
R, O » O|T
, O O oo
O Fr L Ofw

Carry

c=cib
s=ab+ab=a®b

UMBC

Abstract it

Let’s put it in a box called a block diagram and call it a half-adder
Half-Adder (HA) definition: adds two 1-bit values and produces a sum bit and

a carry bit.
A full adder should be able to have a carry in, not just a carry out

Sum

X —® X Sum
Y 7 Half-

Adder
Carry

) Carry out

Half-Adder Using XOR and AND

UMBC

Full adder motivation

e We want to attach multiple 1-bit adders together to create many-bit

adders
e To do this we need a carry-in bit that the previous block’s carry-out bit

would feed into.

UMBC

Full Adder

e A Full Adder (FA) has 3 inputs: two 1-bit values and a carry in, and 2 outputs:

a sum bit and a carry bit.

e That means we need to add three 1-bit values

AB C,| Cyu S
00 0| 0 O
00 1| 0 1
01 0| 0 1
01 1] 1 o0
10 o| o 1
10 1| 1 0
11 0| 1 0
11 1| 1 1

UMBC

Full Adder

e Algebraically simplify
Lets try to get similar statements to the Half adder to see if we can repurpose
a half adder box.

AB C,| Cyu S
00 0| 0 O
00 1| 0 1
01 0| o 1
01 1| 1 o0
10 0| 0 1
10 1| 1 0
11 0] 1 O
11 1] 1 1

> |

S=ABC,+ ABC,+ ABC.,+ABC, Cou=ABC+ABC+ABC+ABC

=A (BC+BC,)+A (B C,+BC,) = C(AB + AB) + AB(C + ()

=A(BDc,)+A(BDC,) Cout = C(AD B) + AB

s=A@BD c,

UMBC

Full adder realized circuit

e Convert to a circuit

Sum

DW O -con

sa@ BB C,

Cin

UMBC

Full adder realized circuit

e Convert to a circuit

Sum

C, (A B)
Couit =Ci, (A D B) + AB
D_‘ — C out

\AB

Cin

UMBC

thanos

Full adder

- ——S
Half adder °

UMBC

Full Adder

e 3Inputs: A, B, Carry in
e 2 outputs: Sum, Carry out
e Putitin a box!

Cut «—— FA |«— cC,

UMBC

Ripple Carry Adder

e Chain together Full Adders to add multiple bits
e C, olssetto0, since nothing is being carried in

| A

out Cin,3 Cin,2 Cin,l Cin,O

UMBC

Ripple Carry Adder example

o AAAA,=0110 (6)
e B,B,B,B,=0011 (3)

Lol 1

+—y FA [——| FA |+——| FA |+— FA |+—

— O
< [EEY

v v v
1

0 0

- <«

Result: 1001, Carry 0O Check: 6+3 =9

UMBC

Ripple Carry Adder - 2s complement

Does this module work for 2s complement?

Yes! Because 2s complement uses regular addition

But the number has to already be in 2s complement form
Letstry -5+ 3

UMBC

Ripple Carry Adder - 2s complement example

(5) 0101 > (inv) & 1010 > (+1) > 1011
o AAAA,=1011 (-5)
e B,B,B,B,=0011 (3)

Lol L1

— FA |——| FA |«——| FA |+—| FA |+—

v ' | '

1 1 1 0 Check: 1110 (2s complement)
1101 (-1)
0010 (invert bits)

Result: 1110, Carry O -

UMBC

It works!

e Let's putitina box
A; B, A, B, A, B, A, B,

A 4 A 4 \ 4 v \ 4 \ 4 v v

C Cin,3 Cin,2 Cin,l Cin,O

—H ra }—| A |[—=| A | Fa |«

y

S3 S; Sy So

e C; ,-C, ;are internal variables, so they disappear

UMBC

4-bit adder
A; B, A, B, A, B, A, B,
|| | | | | | |
Cout Cin,O
— 4-bit adder l—o0

UMBC

4-bit adder another representation

L i

C C,
— A-bit adder '”’OO \i\ 4 Means there are
four wires here—
called a “bus’

1

S

UMBC

8-bit adder from 4 bit adder

A4 B4 Asg Bs.o
1L4 1L 4 1L4 1L 4
Cout . Cin,l . CI 0
— 4-bit adder « 4-bit adder «— 0

M 3

S7.4 S30

UMBC

Adder-Subtractor

In order to make a subtractor, we have to make a 2's complement converter.
Then we’ll reuse the adding circuit as before

In order to do A — B, we’ll convert the B to 2’s complement — but we also want
to be able to add A + B. We need a switch to turn subtracting on and off.

In subtractor mode, we need to invert the bits in B and add 1

o We can make a controllable inverter with an XOR gate

o We can add 1 with the Carry-in to the first FA.

UMBC

Adder-Subtractor implementation

Bs B, B, Bo

J-L | +— ADD/SUBTRACT

= g
Y 17 1Y 1Y

Af

Pl

v ! v v

S, S, S, S,

UMBC

Ripple Carry adder delay

Az B A, Bf 'Il Tl Ao Bo
Cout Cin,3 Cin,2 Cin,l

< FA |¢ FA |«<—| FA |+——| FA

! ! ' !

S; S, SH Sy
Ag, By [--------- ready----=-===-==-c-@cemememo-]
Cln 1 [_________ r\eady _______________________]
A;, B [““““““ r‘eady ———————————————————————]
Cin,» [----mnn-- ready---=========-===--]
A,, B, [--------- ready--------=--=--=----]
Cin,3 [--------- ready---------------]
A;, Bj [--------- ready---------------]
Cout [--------- ready-----------]

UMBC

Gate Delay

e Every gate incurs some delay as information passes through.
e We want to minimize circuit delay so that circuits are faster
We measure worst delay from the critical path. This is the longest path from

input to output in terms of number of gates traversed.

The two critical paths pass
through 3 OR gates

UMBC

Ripple Carry adder delay

A3 Bs A, B,
Cout Cin,3
< FA | FA
v V
S3 S,
Full Adder
A

;DI

Al Bl AO B0
Cin,2 Cin,l 0]
—| FA |[«—| FA |——

Critical Paths for Full Adder:
A,B = Cout : 3 gates

Cin - Cout: 2 gates

A,B = Sum: 2 gates

Cin = Sum: 1 gate

UMBC

Ripple Carry adder delay

A; Bs A, B, A, B, A, By All paths
displayed
J
Cou Cin,
FA |«
e
S, S,
A Fu Adder Paths for Full Adder:
B P S A,B = Cout :|3 gates

;D—Lﬁ)_&m Cin > Cout:
7 A,B 2> Sum:

Cin-> Sum:|1 gate

Cin

UMBC

Ripple Carry adder delay

A; B; A, B A, B A, By CRITICAL PATH
1 1 START
]
Cout Cin,3 0
< FA | FA —
CRITICAL PATH Critical Path:
END 9 gates
S; S,
A Full Adder Paths for Full Adder:
B _ﬁD_J’D sum A,B - Cout :|3 gates

;D—Lﬁ)_&m Cin > Cout:
7 A,B 2> Sum:

Cin-> Sum:|1 gate

Cin

UMBC

ldea: predict carry in advance

e Predict carry-in value in advance so numbers can be added in parallel

e C,,;for Full adder i relies on all input bits before it including A, through A, ,,
By through B ;, and C;, , through C; . ;.

e All Carry in values are dependent on either A or B, so we can leave them out
as part of the predictor logic.

UMBC

Carry lookahead adder idea

T 7 A 2 A

Comb Ckt Comb Ckt Comb Ckt

b4 b Ly b

Full Adder Full Adder Full Adder Full Adder

UMBC

Calculating each carry

Remember how we calculate carry out in the Full Adder

C...=C, (A @ B)+AB

We can find each of the carry bits this way, and create expressions that are

dependent on previous values

C; =Co (A @ By) + AgB,
C,=C (A, ©By) +AB,
C,=C, (A, ®B,) +A,B,
C,=C;(A; @ B;) + A;B;

©

==

c}

® |

© |

— 83

— 82

— 51

— So

UMBC

Carry algebra

For simplicity, Let-

Therefore, we’ll rewrite each C.,, = C. (A, & B,) + AB. as

G, = AB, where G is called carry generator
P.= A @ B, where P is called carry propagator

C, =GPy + Gy
C,=CP,+G;
C;=C,P, + G,

C,=C3P;+ Gy

UMBC

Carry algebra

C,, C, and C, are intermediate carry bits.

So, let's remove C,, C, and C; from RHS of every equation.
Substituting C, = C,P, + G, in for C, = C,P, + G, we get C, in terms of C,,.
We can continue substituting so we get C; in terms of C, and so on.

Therefore we’ll get

o C,=C,P,+G, € 3gates delay

o C;=CyPyPy+ GyPy + Gy & 3 gates delay

e C,=C,P,P,P,+G,P,P,+G,P,+G, < 3gatesdelay

o C,=C,P,PP,P;+ G,P,P,P;+G,P,P;+G,P;+G; & 3gates delay

UMBC

Carry Lookahead adder

A, B, A, B, A, B, A, B,
N A A W
<C°L Carry Lookahead «——

A, B, A, B, A, B, A, B,

| | | | | | | |

FA |« c FA |+ FA |+ FA |+——

in,3 Cin2 Cint
' l ' |

UMBC

Carry Lookahead adder

A, B, A, B, A, B, A, B,
- T AP AP
Cougl Carry| - pkahead “«—— 0

Full Adder

UMBC

Carry Lookahead adder

A; B, A, B, A, B, A, B,

A A I I | c.

el Carry| - pkahead «—®— 0

Critical Path:
4 gates

UMBC

Decoder (DEC)

e A Decoder is a circuit that has n inputs and 2" outputs.
e A decoder converts a binary number s =s_;S,.,...S;S,, and produces a “1” on
the decoded line F, and “0” on all other F output lines.

e Decoders are a combinational circuit that appear frequently in computer
hardware and ALUs

S =<+ DEC P>~ F

UMBC

Decoder example

If s;S, equals 10, (or 2 in decimal), then F, will equal 1 and the other Fs equal O.

0 s — F 0
— pec [—F ©

1 Sl_’ —> F2 1
Fs 0

UMBC

2-bit Decoder (DEC)

e FO
o, — F
DEC 1
Sl_P —p F2 SO
> ks
S
S S1 |Fo F F, Fj
O O |1 0 0 0
O 1 1|0 1 0 0
1 0 (O 0 1 0
1 1 (0 0 0 1

1 :
o

UMBC

Multiplexer (MUX)

e A multiplexer (MUX) has n select bits “s” which allow you to select one of the
2" input lines “I” to duplicate on the output line “out”

Basically allows different inputs to share the same wire as an output
e Use atrapezoid to represent MUX

2n
I =< MUX out

L

S

UMBC

4-input MUX example

e |If I select s=10, then I'm selecting the second line to be displayed on the
output

MUX

S1 So
1 0

UMBC

4-input MUX example explanation

e 6 inputs, so truth table would have 64 rows
e We need an efficient way to design this

s; S, |out I,—>

0 0 1L L= mux
0 1 |1, I,—

1 0 |1, I,

1 1 |1,

S;1 So

out

UMBC

Elon MUX

UMBC

2-Input gate level implementation MUX

IO '
00 0] O I,—
00 1] 0 I
01 0] 1 S

S IO

01 1] 1

I.I
1 0 0] O 01 out

SN\ 00 01 11 10 . ®*

1 0 1| 1 0 0 0 - - I, ‘
1 1 0] O
1 1 1 1 1 0 1 1 0

UMBC

Chain MUXes

Easier than making 6
input Kmap (4 input, 2
select).

MUX

A 4

A 4

MUX

out

UMBC

Demultiplexer (DEMUX)

e A demultiplexer (DEMUX) does the inverse of a MUX.

e A DEMUX has n select bits “s” which allow you to select one of the 2" output
lines to copy the input line to

e Basically allows an input to split an output on different wires.

2n
in —| MUX P> out

UMBC

DEMUX example

e If | select s=10, then I'm selecting the second line I, to be displayed on the
output
e All other outputs have nothing sent over them

— out,
—— out,

UMBC

DEMUX implementation

e Two different representation of the truth table

in s; Sy | 0y O 0O, Og

o 0 0|0 O O O

O 0 1(0 O O O Sy Sp |0y 0O, 0O, Oy
o 1 0|0 O O O O Ofin O O O
o 1 1|10 O O O 0 1 in

1 0 0|1 O O O 1 O in

1 0 1({0 1 0 O 1 1 0 in
1 1 0o|0 O 1 O

1 1 1|10 O 0 1

UMBC

ALU

e Arithmetic logic unit (ALU) is a combinational digital circuit that
performs arithmetic and bitwise operations on integer binary numbers.

a b
a,b are integer operands ,t N i N N: the width of the inputs and
c is an integer result \/ outputs qf the ALU. .
d is an operation selector M: the width of the operation
d selector. There are 2M
M operations for a selector that

N has a width of M.

W UMBC

Summary

Half adder IN(a,b) OUT(c,,, sum)

Full adder IN(a,b,c;,) OUT(c,,, sum)

Carry lookahead adder reduces cumulative gate delay
Decoder outputs a 1 on a specific wire, and 0 everywhere else

Multiplexer and Demultiplexer convert multiple wires to share
one line and the reverse respectively.

UMBC

References

e https://www.qgatevidyalay.com/tag/disadvantages-of-carry-look-ahead-adder/
e https://www.allaboutelectronics.org/half-adder-and-full-adder-explained/
e https://redirect.cs.umbc.edu/~tsimol/CMSC313/topics/Slides21.pdf

https://www.gatevidyalay.com/tag/disadvantages-of-carry-look-ahead-adder/
https://www.allaboutelectronics.org/half-adder-and-full-adder-explained/
https://redirect.cs.umbc.edu/~tsimo1/CMSC313/topics/Slides21.pdf

	Slide 1: Adders and other circuits
	Slide 2: 1-bit Adder logic
	Slide 3: 1-bit Adder circuits
	Slide 4: Abstract it
	Slide 5: Full adder motivation
	Slide 6: Full Adder
	Slide 7: Full Adder
	Slide 8: Full adder realized circuit
	Slide 9: Full adder realized circuit
	Slide 10: thanos
	Slide 11: Full Adder
	Slide 12: Ripple Carry Adder
	Slide 13: Ripple Carry Adder example
	Slide 14: Ripple Carry Adder - 2s complement
	Slide 15: Ripple Carry Adder - 2s complement example
	Slide 16: It works!
	Slide 17: 4-bit adder
	Slide 18: 4-bit adder another representation
	Slide 19: 8-bit adder from 4 bit adder
	Slide 20: Adder-Subtractor
	Slide 21: Adder-Subtractor implementation
	Slide 22: Ripple Carry adder delay
	Slide 23: Gate Delay
	Slide 24: Ripple Carry adder delay
	Slide 25: Ripple Carry adder delay
	Slide 26: Ripple Carry adder delay
	Slide 27: Idea: predict carry in advance
	Slide 28: Carry lookahead adder idea
	Slide 29: Calculating each carry
	Slide 30: Carry algebra
	Slide 31: Carry algebra
	Slide 32: Carry Lookahead adder
	Slide 33: Carry Lookahead adder
	Slide 34: Carry Lookahead adder
	Slide 35: Decoder (DEC)
	Slide 36: Decoder example
	Slide 37: 2-bit Decoder (DEC)
	Slide 38: Multiplexer (MUX)
	Slide 39: 4-input MUX example
	Slide 40: 4-input MUX example explanation
	Slide 41: Elon MUX
	Slide 42: 2-input gate level implementation MUX
	Slide 43: Chain MUXes
	Slide 44: Demultiplexer (DEMUX)
	Slide 45: DEMUX example
	Slide 46: DEMUX implementation
	Slide 47: ALU
	Slide 48: Summary
	Slide 49: References

