
Adders and other circuits
CMSC 313

Raphael Elspas

1-bit Adder logic

● Let’s build a circuit which adds 2 bits: “a” & “b” together.

● We need two bits to store the output, so we’ll use a sum bit “s” and a

carry bit “c”.

a b c s

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

𝑐 = 𝑎𝑏
𝑠 = 𝑎ത𝑏 + ത𝑎𝑏 = 𝑎 ⊕ 𝑏

1-bit Adder circuits

● Input: a, b. Output: c, s

a b c s

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

𝑐 = 𝑎𝑏
𝑠 = 𝑎ത𝑏 + ത𝑎𝑏 = 𝑎 ⊕ 𝑏

Abstract it

● Let’s put it in a box called a block diagram and call it a half-adder

● Half-Adder (HA) definition: adds two 1-bit values and produces a sum bit and

a carry bit.

● A full adder should be able to have a carry in, not just a carry out

Full adder motivation

● We want to attach multiple 1-bit adders together to create many-bit

adders

● To do this we need a carry-in bit that the previous block’s carry-out bit

would feed into.

Full Adder

● A Full Adder (FA) has 3 inputs: two 1-bit values and a carry in, and 2 outputs:

a sum bit and a carry bit.

● That means we need to add three 1-bit values

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder

● Algebraically simplify

● Lets try to get similar statements to the Half adder to see if we can repurpose

a half adder box.

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Cout = ഥABC + AഥBC + ABതC + ABC

= C ഥAB + AഥB + AB(തC + C)

Cout = C A⊕ B + AB

Full adder realized circuit

● Convert to a circuit

S = A ⊕ B ⊕ Cin

Cout = Cin (A ⊕ B) + AB

A

B

Full adder realized circuit

● Convert to a circuit

S = A ⊕ B ⊕ Cin

Cout = Cin (A ⊕ B) + AB

A

B

A ⊕ B

Cin (A ⊕ B)

AB

thanos

Full adder

Half adder

Full Adder

● 3 Inputs: A, B, Carry in

● 2 outputs: Sum, Carry out

● Put it in a box!

FA Cin
Cout

A B

S

Ripple Carry Adder

● Chain together Full Adders to add multiple bits

● Cin,0 is set to 0, since nothing is being carried in

FAFAFAFA

A0 B0

S0

Cin,1Cin,2Cin,3

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout Cin,0
0

Ripple Carry Adder example

● A3A2A1A0 = 0110 (6)

● B3B2B1B0 = 0011 (3)

FAFAFAFA

0 1

1

011

1 1

0

1 0

0

0 0

1

0 0

Result: 1001, Carry 0 Check: 6+3 = 9

Ripple Carry Adder - 2s complement

● Does this module work for 2s complement?

● Yes! Because 2s complement uses regular addition

● But the number has to already be in 2s complement form

● Lets try -5 + 3

Ripple Carry Adder - 2s complement example

(5) 0101 → (inv) → 1010 → (+1) → 1011

● A3A2A1A0 = 1011 (-5)

● B3B2B1B0 = 0011 (3)

FAFAFAFA

1 1

0

110

1 1

1

0 0

1

1 0

1

0 0

Result: 1110, Carry 0

Check: 1110 (2s complement)

1101 (-1)

0010 (invert bits)

= -2

It works!

● Let’s put it in a box

● Cin,1-Cin,3 are internal variables, so they disappear

FAFAFAFA

A0 B0

S0

Cin,1Cin,2Cin,3

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout
Cin,0

0

4-bit adder

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout
Cin,0

04-bit adder

4-bit adder another representation

A B

S

Cout Cin,0

04-bit adder

4 4

4

4 Means there are

four wires here–

called a “bus”

Note

8-bit adder from 4 bit adder

A7-4 B7-4

S7-4

Cout
4-bit adder

4 4

4

A3-0 B3-0

S3-0

Cin,1 Cin,0

04-bit adder

4 4

4

Adder-Subtractor

● In order to make a subtractor, we have to make a 2’s complement converter.

● Then we’ll reuse the adding circuit as before

● In order to do A – B, we’ll convert the B to 2’s complement – but we also want

to be able to add A + B. We need a switch to turn subtracting on and off.

● In subtractor mode, we need to invert the bits in B and add 1

○ We can make a controllable inverter with an XOR gate

○ We can add 1 with the Carry-in to the first FA.

Adder-Subtractor implementation

FAFAFAFA

A0

B0

S0

Cin,1Cin,2Cin,3

A1

B1

S1

A2

B2

S2

A3

B3

S3

Cout

ADD/SUBTRACT

Ripple Carry adder delay

FAFAFAFA

A0 B0

S0

Cin,1Cin,2Cin,3

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout 0

A0, B0 [---------ready---------------------------]
Cin,1 [---------ready-----------------------]

A1, B1 [---------ready-----------------------]
Cin,2 [---------ready-------------------]

A2, B2 [---------ready-------------------]
Cin,3 [---------ready---------------]

A3, B3 [---------ready---------------]
Cout [---------ready-----------]

Gate Delay

● Every gate incurs some delay as information passes through.

● We want to minimize circuit delay so that circuits are faster

● We measure worst delay from the critical path. This is the longest path from

input to output in terms of number of gates traversed.

The two critical paths pass

through 3 OR gates

Ripple Carry adder delay

FAFAFAFA

A0 B0

S0

Cin,1Cin,2Cin,3

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout 0

A

B

Full Adder

Critical Paths for Full Adder:

A,B → Cout : 3 gates

Cin → Cout: 2 gates

A,B → Sum: 2 gates

Cin→ Sum: 1 gate

Ripple Carry adder delay

FAFAFAFA

A0 B0

S0

Cin,1Cin,2Cin,3

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout 0

A

B

Full Adder

3 gates

2 gates

3 gates3 gates

2 gates2 gates2 gates

3 gates

All paths

displayed

Paths for Full Adder:

A,B → Cout : 3 gates

Cin → Cout: 2 gates

A,B → Sum: 2 gates

Cin→ Sum: 1 gate

Ripple Carry adder delay

FAFAFAFA

A0 B0

S0

Cin,1Cin,2Cin,3

A1 B1

S1

A2 B2

S2

A3 B3

S3

Cout 0

A

B

Full Adder

3 gates

2 gates

3 gates

Paths for Full Adder:

A,B → Cout : 3 gates

Cin → Cout: 2 gates

A,B → Sum: 2 gates

Cin→ Sum: 1 gate

2 gates2 gates2 gates

3 gates3 gates

CRITICAL PATH

START

CRITICAL PATH

END
Critical Path:

9 gates

Idea: predict carry in advance

● Predict carry-in value in advance so numbers can be added in parallel

● Cin,i for Full adder i relies on all input bits before it including A0 through Ai-1,

B0 through Bi-1, and Cin,0 through Cin,i-1.

● All Carry in values are dependent on either A or B, so we can leave them out

as part of the predictor logic.

Carry lookahead adder idea

Calculating each carry

● Remember how we calculate carry out in the Full Adder

Cout = Cin (A ⊕ B) + AB

● We can find each of the carry bits this way, and create expressions that are

dependent on previous values

● C1 = C0 (A0 ⊕ B0) + A0B0

● C2 = C1 (A1 ⊕ B1) + A1B1

● C3 = C2 (A2 ⊕ B2) + A2B2

● C4 = C3 (A3 ⊕ B3) + A3B3

Carry algebra

For simplicity, Let-

● Gi = AiBi where G is called carry generator

● Pi = Ai ⊕ Bi where P is called carry propagator

Therefore, we’ll rewrite each Ci+1 = Ci (Ai ⊕ Bi) + AiBi as

● C1 = C0P0 + G0

● C2 = C1P1 + G1

● C3 = C2P2 + G2

● C4 = C3P3 + G3

Carry algebra

● C1, C2 and C3 are intermediate carry bits.

● So, let’s remove C1, C2 and C3 from RHS of every equation.

● Substituting C1 = C0P0 + G0 in for C2 = C1P1 + G1 we get C2 in terms of C0.

● We can continue substituting so we get C3 in terms of C0 and so on.

Therefore we’ll get

● C1 = C0P0 + G0

● C2 = C0P0P1 + G0P1 + G1

● C3 = C0P0P1P2 + G0P1P2 + G1P2 + G2

● C4 = C0P0P1P2P3 + G0P1P2P3 + G1P2P3 + G2P3 + G3  3 gates delay

 3 gates delay

 3 gates delay

 3 gates delay

Carry Lookahead adder

FAFAFAFA

A0 B0

S0

Cin,1Cin,2
Cin,3

A1 B1

S1

A2 B2

S2

A3 B3

S3

Carry Lookahead

A0 B0A1 B1A2 B2

Cin,0

0
Cout

A3 B3

Carry Lookahead adder

FAFAFAFA

A0 B0

S0

Cin,1Cin,2
Cin,3

A1 B1

S1

A2 B2

S2

A3 B3

S3

Carry Lookahead

A0 B0A1 B1A2 B2

Cin,0

0
Cout

A3 B3

3
 g

a
te

s

3 gates

2
 g

a
te

s

1 gates

2
 g

a
te

s

3
 g

a
te

s

3
 g

a
te

s

1 gates
1 gates

2
 g

a
te

s

2
 g

a
te

s

1 gates

A

B

Full Adder

Carry Lookahead adder

FAFAFAFA

A0 B0

S0

Cin,1Cin,2
Cin,3

A1 B1

S1

A2 B2

S2

A3 B3

S3

Carry Lookahead

A0 B0A1 B1A2 B2

Cin,0

0
Cout

A3 B3

3
 g

a
te

s

3 gates

2
 g

a
te

s

1 gates

3
 g

a
te

s

3
 g

a
te

s

1 gates
1 gates 1 gates

2
 g

a
te

s

2
 g

a
te

s

2
 g

a
te

s

Critical Path:

4 gates

Decoder (DEC)

● A Decoder is a circuit that has n inputs and 2n outputs.

● A decoder converts a binary number s = sn-1sn-2…s1s0, and produces a “1” on

the decoded line Fs, and “0” on all other F output lines.

● Decoders are a combinational circuit that appear frequently in computer

hardware and ALUs

DECs F

n 2n

Decoder example

If s1s0 equals 10, (or 2 in decimal), then F2 will equal 1 and the other Fs equal 0.

DEC
s0

s1

F0

F1

F2

F3

0

1

0

0

1

0

2-bit Decoder (DEC)

DEC
s0

s1

F0

F1

F2

F3

s0 s1 F0 F1 F2 F3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

s0

s1

F0

F3

F1

F2

Multiplexer (MUX)

● A multiplexer (MUX) has n select bits “s” which allow you to select one of the

2n input lines “I” to duplicate on the output line “out”

● Basically allows different inputs to share the same wire as an output

● Use a trapezoid to represent MUX

s

I

n

2n

outMUX

4-input MUX example

● If I select s=10, then I’m selecting the second line to be displayed on the

output

s1 s0

1 0

MUX

4-input MUX example explanation

● 6 inputs, so truth table would have 64 rows

● We need an efficient way to design this

s1

I0

s0

I1
I2

I3

out

s1 s0 out

0 0 I0

0 1 I1

1 0 I2

1 1 I3

MUX

Elon MUX

2-input gate level implementation MUX

s

I0

I1

outMUXs I0 I1 out

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

𝐹 = ҧ𝑠𝐼0 + 𝑠𝐼1

00 01 11 10

0 0 0 1 1

1 0 1 1 0

I0I1

s

ҧs

s

I0

I1

out

Chain MUXes

s0

MUX
s1

outMUX
s0

I0
MUX

I1

I2

I3

Easier than making 6

input Kmap (4 input, 2

select).

Demultiplexer (DEMUX)

● A demultiplexer (DEMUX) does the inverse of a MUX.

● A DEMUX has n select bits “s” which allow you to select one of the 2n output

lines to copy the input line to

● Basically allows an input to split an output on different wires.

s

in

n

2n

outMUX

DEMUX example

● If I select s=10, then I’m selecting the second line I2 to be displayed on the

output

● All other outputs have nothing sent over them

s1

out0

s0

1 0

in MUX

out1

out2

out3

DEMUX implementation

● Two different representation of the truth table

in s1 s0 o0 o1 o2 o3

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 1 1 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

s1 s0 o0 o1 o2 o3

0 0 in 0 0 0

0 1 0 in 0 0

1 0 0 0 in 0

1 1 0 0 0 in

ALU

● Arithmetic logic unit (ALU) is a combinational digital circuit that

performs arithmetic and bitwise operations on integer binary numbers.

a b

c

d

N N

N

M

N: the width of the inputs and

outputs of the ALU.

M: the width of the operation

selector. There are 2M

operations for a selector that

has a width of M.

a,b are integer operands

c is an integer result

d is an operation selector

Summary

● Half adder IN(a,b) OUT(cout, sum)

● Full adder IN(a,b,cin) OUT(cout, sum)

● Carry lookahead adder reduces cumulative gate delay

● Decoder outputs a 1 on a specific wire, and 0 everywhere else

● Multiplexer and Demultiplexer convert multiple wires to share

one line and the reverse respectively.

References

● https://www.gatevidyalay.com/tag/disadvantages-of-carry-look-ahead-adder/

● https://www.allaboutelectronics.org/half-adder-and-full-adder-explained/

● https://redirect.cs.umbc.edu/~tsimo1/CMSC313/topics/Slides21.pdf

https://www.gatevidyalay.com/tag/disadvantages-of-carry-look-ahead-adder/
https://www.allaboutelectronics.org/half-adder-and-full-adder-explained/
https://redirect.cs.umbc.edu/~tsimo1/CMSC313/topics/Slides21.pdf

	Slide 1: Adders and other circuits
	Slide 2: 1-bit Adder logic
	Slide 3: 1-bit Adder circuits
	Slide 4: Abstract it
	Slide 5: Full adder motivation
	Slide 6: Full Adder
	Slide 7: Full Adder
	Slide 8: Full adder realized circuit
	Slide 9: Full adder realized circuit
	Slide 10: thanos
	Slide 11: Full Adder
	Slide 12: Ripple Carry Adder
	Slide 13: Ripple Carry Adder example
	Slide 14: Ripple Carry Adder - 2s complement
	Slide 15: Ripple Carry Adder - 2s complement example
	Slide 16: It works!
	Slide 17: 4-bit adder
	Slide 18: 4-bit adder another representation
	Slide 19: 8-bit adder from 4 bit adder
	Slide 20: Adder-Subtractor
	Slide 21: Adder-Subtractor implementation
	Slide 22: Ripple Carry adder delay
	Slide 23: Gate Delay
	Slide 24: Ripple Carry adder delay
	Slide 25: Ripple Carry adder delay
	Slide 26: Ripple Carry adder delay
	Slide 27: Idea: predict carry in advance
	Slide 28: Carry lookahead adder idea
	Slide 29: Calculating each carry
	Slide 30: Carry algebra
	Slide 31: Carry algebra
	Slide 32: Carry Lookahead adder
	Slide 33: Carry Lookahead adder
	Slide 34: Carry Lookahead adder
	Slide 35: Decoder (DEC)
	Slide 36: Decoder example
	Slide 37: 2-bit Decoder (DEC)
	Slide 38: Multiplexer (MUX)
	Slide 39: 4-input MUX example
	Slide 40: 4-input MUX example explanation
	Slide 41: Elon MUX
	Slide 42: 2-input gate level implementation MUX
	Slide 43: Chain MUXes
	Slide 44: Demultiplexer (DEMUX)
	Slide 45: DEMUX example
	Slide 46: DEMUX implementation
	Slide 47: ALU
	Slide 48: Summary
	Slide 49: References

