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1-bit Adder logic

e Let’s build a circuit which adds 2 bits: “a” & “b” together.
e We need two bits to store the output, so we'll use a sum bit “s” and a

(1Pt

carry bit “c”.

c = ab
s=ab+ab=a®Pb
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1-bit Adder circuits
e Input: a, b. Output: c, s

Sum

e i I
B
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Carry

c=cib
s=ab+ab=a®b




UMBC

Abstract it

Let’s put it in a box called a block diagram and call it a half-adder
Half-Adder (HA) definition: adds two 1-bit values and produces a sum bit and

a carry bit.
A full adder should be able to have a carry in, not just a carry out

Sum

X —® X Sum
Y 7 Half-

Adder
Carry

) Carry out

Half-Adder Using XOR and AND
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Full adder motivation

e We want to attach multiple 1-bit adders together to create many-bit

adders
e To do this we need a carry-in bit that the previous block’s carry-out bit

would feed into.
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Full Adder

e A Full Adder (FA) has 3 inputs: two 1-bit values and a carry in, and 2 outputs:

a sum bit and a carry bit.

e That means we need to add three 1-bit values

AB C,| Cyu S
00 0| 0 O
00 1| 0 1
01 0| 0 1
01 1] 1 o0
10 o| o 1
10 1| 1 0
11 0| 1 0
11 1| 1 1
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Full Adder

e Algebraically simplify
Lets try to get similar statements to the Half adder to see if we can repurpose
a half adder box.

AB C,| Cyu S
00 0| 0 O
00 1| 0 1
01 0| o 1
01 1| 1 o0
10 0| 0 1
10 1| 1 0
11 0] 1 O
11 1] 1 1

> |

S=ABC,+ ABC,+ ABC.,+ABC, Cou=ABC+ABC+ABC+ABC

=A (BC+BC, )+A (B C,+BC,) = C(AB + AB) + AB(C + ()

=A(BDc, )+A(BDC,) Cout = C(AD B) + AB

s=A@BD c,
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Full adder realized circuit

e Convert to a circuit

Sum

DW O -con

sa@ BB C,

Cin
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Full adder realized circuit

e Convert to a circuit

Sum

C, (A B)
Couit =Ci, (A D B) + AB
D_‘ — C out

\AB

Cin
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thanos

Full adder

- ——S
Half adder °
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Full Adder

e 3Inputs: A, B, Carry in
e 2 outputs: Sum, Carry out
e Putitin a box!

Cut «—— FA |«— cC,
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Ripple Carry Adder

e Chain together Full Adders to add multiple bits
e C, olssetto0, since nothing is being carried in

| A

out Cin,3 Cin,2 Cin,l Cin,O
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Ripple Carry Adder example

o AAAA,=0110 (6)
e B,B,B,B,=0011 (3)

Lol 1

+—y FA [——| FA |+——| FA |+— FA |+—

— O
< [EEY

v v v
1

0 0

- <«

Result: 1001, Carry 0O Check: 6+3 =9
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Ripple Carry Adder - 2s complement

Does this module work for 2s complement?

Yes! Because 2s complement uses regular addition

But the number has to already be in 2s complement form
Letstry -5+ 3
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Ripple Carry Adder - 2s complement example

(5) 0101 > (inv) & 1010 > (+1) > 1011
o AAAA,=1011 (-5)
e B,B,B,B,=0011 (3)

Lol L1

— FA |——| FA |«——| FA |+—| FA |+—

v ' | '

1 1 1 0 Check: 1110 (2s complement)
1101 (-1)
0010 (invert bits)

Result: 1110, Carry O -
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It works!

e Let's putitina box
A; B, A, B, A, B, A, B,

A 4 A 4 \ 4 v \ 4 \ 4 v v

C Cin,3 Cin,2 Cin,l Cin,O

—H ra }—| A |[—=| A | Fa |«

y

S3 S; Sy So

e C; ,-C, ;are internal variables, so they disappear
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4-bit adder
A; B, A, B, A, B, A, B,
|| | | | | | |
Cout Cin,O
— 4-bit adder l—o0
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4-bit adder another representation

L i

C C,
— A-bit adder '”’OO \i\ 4  Means there are
four wires here—
called a “bus’

1

S
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8-bit adder from 4 bit adder

A4 B4 Asg Bs.o
1L4 1L 4 1L4 1L 4
Cout . Cin,l . CI 0
— 4-bit adder « 4-bit adder «— 0

M 3

S7.4 S30
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Adder-Subtractor

In order to make a subtractor, we have to make a 2's complement converter.
Then we’ll reuse the adding circuit as before

In order to do A — B, we’ll convert the B to 2’s complement — but we also want
to be able to add A + B. We need a switch to turn subtracting on and off.

In subtractor mode, we need to invert the bits in B and add 1

o We can make a controllable inverter with an XOR gate

o We can add 1 with the Carry-in to the first FA.
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Adder-Subtractor implementation

Bs B, B, Bo

J-L | +— ADD/SUBTRACT

= g
Y 17 1Y 1Y

Af

Pl

v ! v v

S, S, S, S,
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Ripple Carry adder delay

Az B A, Bf 'Il Tl Ao Bo
Cout Cin,3 Cin,2 Cin,l

< FA |¢ FA |«<—| FA |+——| FA

! ! ' !

S; S, SH Sy
Ag, By [--------- ready----=-===-==-c-@cemememo- ]
Cln 1 [ _________ r\eady _______________________ ]
A;, B [ ““““““ r‘eady ——————————————————————— ]
Cin,» [----mnn-- ready---=========-===-- ]
A,, B, [--------- ready--------=--=--=---- ]
Cin,3 [--------- ready--------------- ]
A;, Bj [--------- ready--------------- ]
Cout [--------- ready----------- ]
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Gate Delay

e Every gate incurs some delay as information passes through.
e We want to minimize circuit delay so that circuits are faster
We measure worst delay from the critical path. This is the longest path from

input to output in terms of number of gates traversed.

The two critical paths pass
through 3 OR gates
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Ripple Carry adder delay

A3 Bs A, B,
Cout Cin,3
< FA | FA
v V
S3 S,
Full Adder
A

;DI

Al Bl AO B0
Cin,2 Cin,l 0]
—| FA |[«—| FA |——

Critical Paths for Full Adder:
A,B = Cout : 3 gates

Cin - Cout: 2 gates

A,B = Sum: 2 gates

Cin = Sum: 1 gate
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Ripple Carry adder delay

A; Bs A, B, A, B, A, By All paths
displayed
J
Cou Cin,
FA |«
e
S, S,
A Fu Adder Paths for Full Adder:
B P S A,B = Cout :|3 gates

;D—Lﬁ)_&m Cin > Cout:
7 A,B 2> Sum:

Cin-> Sum:|1 gate

Cin
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Ripple Carry adder delay

A; B; A, B A, B A, By CRITICAL PATH
1 1 START
]
Cout Cin,3 0
< FA | FA —
CRITICAL PATH Critical Path:
END 9 gates
S; S,
A Full Adder Paths for Full Adder:
B _ﬁD_J’D sum A,B - Cout :|3 gates

;D—Lﬁ)_&m Cin > Cout:
7 A,B 2> Sum:

Cin-> Sum:|1 gate

Cin
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ldea: predict carry in advance

e Predict carry-in value in advance so numbers can be added in parallel

e C,,;for Full adder i relies on all input bits before it including A, through A, ,,
By through B ;, and C;, , through C; . ;.

e All Carry in values are dependent on either A or B, so we can leave them out
as part of the predictor logic.
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Carry lookahead adder idea

T 7 A 2 A

Comb Ckt Comb Ckt Comb Ckt

b4 b Ly b

Full Adder Full Adder Full Adder Full Adder
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Calculating each carry

Remember how we calculate carry out in the Full Adder

C...=C, (A @ B)+AB

We can find each of the carry bits this way, and create expressions that are

dependent on previous values

C; =Co (A @ By) + AgB,
C,=C (A, ©By) +AB,
C,=C, (A, ®B,) +A,B,
C,=C;(A; @ B;) + A;B;

©

==

c}

® |

© |

— 83

— 82

— 51

— So
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Carry algebra

For simplicity, Let-

Therefore, we’ll rewrite each C.,, = C. (A, & B,) + AB. as

G, = AB, where G is called carry generator
P.= A @ B, where P is called carry propagator

C, =GPy + Gy
C,=CP,+G;
C;=C,P, + G,

C,=C3P;+ Gy
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Carry algebra

C,, C, and C, are intermediate carry bits.

So, let's remove C,, C, and C; from RHS of every equation.
Substituting C, = C,P, + G, in for C, = C,P, + G, we get C, in terms of C,,.
We can continue substituting so we get C; in terms of C, and so on.

Therefore we’ll get

o C,=C,P,+G, € 3gates delay

o C;=CyPyPy+ GyPy + Gy & 3 gates delay

e C,=C,P,P,P,+G,P,P,+G,P,+G, < 3gatesdelay

o C,=C,P,PP,P;+ G,P,P,P;+G,P,P;+G,P;+G; & 3gates delay
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Carry Lookahead adder

A, B, A, B, A, B, A, B,
N A A W
<C°L Carry Lookahead «——

A, B, A, B, A, B, A, B,

| | | | | | | |

FA |« c FA |+ FA |+ FA |+——

in,3 Cin2 Cint
' l ' |
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Carry Lookahead adder

A, B, A, B, A, B, A, B,
- T AP AP
Cougl Carry| - pkahead “«—— 0

Full Adder
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Carry Lookahead adder

A; B, A, B, A, B, A, B,

A A I I | c.

el Carry| - pkahead «—®— 0

Critical Path:
4 gates
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Decoder (DEC)

e A Decoder is a circuit that has n inputs and 2" outputs.
e A decoder converts a binary number s =s_;S,.,...S;S,, and produces a “1” on
the decoded line F, and “0” on all other F output lines.

e Decoders are a combinational circuit that appear frequently in computer
hardware and ALUs

S =<+ DEC P>~ F
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Decoder example

If s;S, equals 10, (or 2 in decimal), then F, will equal 1 and the other Fs equal O.

0 s — F 0
— pec [—F ©

1 Sl_’ —> F2 1
Fs 0
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2-bit Decoder (DEC)

e FO
o, — F
DEC 1
Sl_P —p F2 SO
> ks
S
S S1 |Fo F F, Fj
O O |1 0 0 0
O 1 1|0 1 0 0
1 0 (O 0 1 0
1 1 (0 0 0 1

1 :
o
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Multiplexer (MUX)

e A multiplexer (MUX) has n select bits “s” which allow you to select one of the
2" input lines “I” to duplicate on the output line “out”

Basically allows different inputs to share the same wire as an output
e Use atrapezoid to represent MUX

2n
I =< MUX out

L

S
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4-input MUX example

e |If I select s=10, then I'm selecting the second line to be displayed on the
output

MUX

S1 So
1 0




UMBC

4-input MUX example explanation

e 6 inputs, so truth table would have 64 rows
e We need an efficient way to design this

s; S, |out I,—>

0 0 1L L= mux
0 1 |1, I,—

1 0 |1, I,

1 1 |1,

S;1 So

out
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Elon MUX
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2-Input gate level implementation MUX

IO '
00 0] O I,—
00 1] 0 I
01 0] 1 S

S IO

01 1] 1

I.I
1 0 0] O 01 out

SN\ 00 01 11 10 . ®*

1 0 1| 1 0 0 0 - - I, ‘
1 1 0] O
1 1 1 1 1 0 1 1 0
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Chain MUXes

Easier than making 6
input Kmap (4 input, 2
select).

MUX

A 4

A 4

MUX

out
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Demultiplexer (DEMUX)

e A demultiplexer (DEMUX) does the inverse of a MUX.

e A DEMUX has n select bits “s” which allow you to select one of the 2" output
lines to copy the input line to

e Basically allows an input to split an output on different wires.

2n
in —| MUX P> out
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DEMUX example

e If | select s=10, then I'm selecting the second line I, to be displayed on the
output
e All other outputs have nothing sent over them

— out,
—— out,
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DEMUX implementation

e Two different representation of the truth table

in s; Sy | 0y O 0O, Og

o 0 0|0 O O O

O 0 1(0 O O O Sy Sp |0y 0O, 0O, Oy
o 1 0|0 O O O O Ofin O O O
o 1 1|10 O O O 0 1 in

1 0 0|1 O O O 1 O in

1 0 1({0 1 0 O 1 1 0 in
1 1 0o|0 O 1 O

1 1 1|10 O 0 1
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ALU

e Arithmetic logic unit (ALU) is a combinational digital circuit that
performs arithmetic and bitwise operations on integer binary numbers.

a b
a,b are integer operands ,t N i N N: the width of the inputs and
c is an integer result \/ outputs qf the ALU. .
d is an operation selector M: the width of the operation
d selector. There are 2M
M operations for a selector that

N has a width of M.
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Summary

Half adder IN(a,b) OUT(c,,, sum)

Full adder IN(a,b,c;,) OUT(c,,, sum)

Carry lookahead adder reduces cumulative gate delay
Decoder outputs a 1 on a specific wire, and 0 everywhere else

Multiplexer and Demultiplexer convert multiple wires to share
one line and the reverse respectively.
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References

e https://www.qgatevidyalay.com/tag/disadvantages-of-carry-look-ahead-adder/
e https://www.allaboutelectronics.org/half-adder-and-full-adder-explained/
e https://redirect.cs.umbc.edu/~tsimol/CMSC313/topics/Slides21.pdf
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