Counters and Sequence Generators

CMSC 313
Raphael Elspas

Counter

- Sometimes we want to count numbers and store their values in a series of flip flops.
- We'll design a counter with several flip flops connected in a cascade.
- Example: if we want to count 0-7, we need 3 flip flops to store values 000-111, and then connect them in the right way so that after 111, the values go back to zero.
- The tricky part is coming up with the design that works for every state

0-3 Counter

- Let's design a counter that counts $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 0$ (back to 0 in a loop) with JK flip flops that is triggered by positive edge clock cycles.
- We know we will need 2 flip flops.
- Let's draw a state table and state diagram for all state transitions

0-3 Counter (cont.)

- We need to find how to connect the JK flip flops together.
- Let's find the JK inputs required to convert Q_{A} to $Q_{A}+$ and Q_{B} to $Q_{B}+$
- Extend state table so JK values are colinear with State transitions
- Values are labeled x when there are multiple ways to get a transition. E.g.to go from $Q_{A}=0$ to $Q_{A}=0$, either $J=0, K=0$ or $J=0, K=1$. Since K can be either value, we mark it as a don't care.

Q_{A}	Q_{B}	$Q_{A^{+}}$	$Q_{B^{+}}$	J_{A}	K_{A}	J_{B}	K_{B}
0	0	0	1	0	X	1	X
0	1	1	0	1	X	X	1
1	0	1	1	X	0	1	X
1	1	0	0	X	1	X	1

0-3 Counter (cont.)

- From all $J K$ values design circuit with K Maps in terms of current states Q_{A} and Q_{B}.

0-3 Counter (cont.)

You can read the value of the counter by reading the values at Q_{A} and Q_{B}.

Bidirectional counter

- Let's make a 2 bit counter that counts both up and down $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow($ back to 0$)$ and $3 \rightarrow 2 \rightarrow 1 \rightarrow 0 \rightarrow$ (back to 3)
- We want to control it going up or down, so let's use an input for control
- Another constraint: The MSB shall use a T flip flop and the LSB shall use a D flip flop
- Let's design!

State diagram and table

We now need another set of arrows on our diagram, as well as inputs describing what the next state is depending on input

X	Q_{A}	Q_{B}	$Q_{A}+$	$Q_{B}+$
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

State design

- Populate T and D with excitation table

Combined excitation table for T and D

Q	$\mathrm{Q}+$	T	D
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	1

X	Q_{A}	Q_{B}	$\mathrm{Q}_{\mathrm{A}^{+}}$	$\mathrm{Q}_{\mathrm{B}^{+}}$	T	D
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	1	0	0	1	1	1
1	1	1	1	0	0	0

State design

X	Q_{A}	Q_{B}	$\mathrm{Q}_{\mathrm{A}^{+}}$	$\mathrm{Q}_{\mathrm{B}^{+}}$	T	D
0	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1	0	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	1	0	0	1	1	1
1	1	1	1	0	0	0

0-3 up/down counter

Sequence Generator

- What if we want to count ranges that are not a power of 2 ?
- We will have unused states
- Its possible to start in one of the states and have undefined behavior.
- We can either:
- We can force our flip flops to start with a certain states
- We can interpolate states
- What if we want to count out of order?
- A sequence generator is a counter where any sequence of numbers will repeat in a cycle.

Sequence Generator

- Let's create a sequence with pattern $1 \rightarrow 3 \rightarrow 2 \rightarrow 7 \rightarrow 1$ (repeat)

Excitation table for JK

Q Output		Inputs	
Present State	Next State	$\mathbf{J}_{\mathbf{n}}$	$\mathbf{K}_{\mathbf{n}}$
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

Q_{A}	Q_{B}	Q_{C}	$Q_{A^{+}}$	$Q_{B}+$	$Q_{C^{+}}$	J_{A}	K_{A}	J_{B}	K_{B}	J_{C}	K_{C}
0	0	0									
0	0	1	0	1	1	0	x	1	x	x	0
0	1	0	1	1	1	1	x	x	0	1	x
0	1	1	0	1	0	0	x	x	0	x	1
1	0	0									
1	0	1									
1	1	0									
1	1	1	0	0	1	x	1	x	1	x	0

Seq Gen (cont.)

Kmaps

$$
\begin{array}{ccc|ccc|ccccc}
Q_{A} & Q_{B} & Q_{C} & Q_{A^{+}} & Q_{B^{+}} & Q_{C^{+}} & J_{A} & K_{A} & J_{B} & K_{B} & J_{C}
\end{array} K_{C} .
$$

Seq Gen

- We can draw a circuit from our equations

$$
\begin{array}{ll}
J_{A}=\overline{Q_{C}} & K_{A}=1 \\
J_{B}=1 & K_{B}=Q_{A} \\
J_{C}=1 & K_{C}=\overline{Q_{A}} Q_{B}
\end{array}
$$

Seq Gen State diagram

How do our extra states fit into our state diagram?

Seq Gen (cont.)

Q_{A}	Q_{B}	Q_{C}	$Q_{A}+$	$Q_{B}+$	$Q_{C}+$	J_{A}	K_{A}	J_{B}	K_{B}	J_{C}	K_{C}
0	0	0				1	1	1	0	1	0
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	1	1	1	1	X	X	0	1	X
0	1	1	0	1	0	0	X	X	0	X	1
1	0	0				1	1	1	1	1	0
1	0	1				0	1	1	1	1	0
1	1	0				1	1	1	1	1	0
1	1	1	0	0	1	x	1	x	1	x	0

- Let's find out what happens to the other states and their transitions.
- From J and K equations, find what values the don't cares are being used as (zeros or ones)

$$
\begin{array}{ll}
J_{A}=\overline{Q_{C}} & K_{A}=1 \\
J_{B}=1 & K_{B}=Q_{A} \\
J_{C}=1 & K_{C}=\overline{Q_{A}} Q_{B}
\end{array}
$$

Seq Gen (cont.)

Q_{A}	Q_{B}	Q_{C}	$Q_{A}+$	$Q_{B}+$	$Q_{C}+$	J_{A}	K_{A}	J_{B}	K_{B}	J_{C}	K_{C}
0	0	0	1	1	1	1	1	1	0	1	0
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	1	1	1	1	X	X	0	1	X
0	1	1	0	1	0	0	X	X	0	X	1
1	0	0	0	1	1	1	1	1	1	1	0
1	0	1	0	1	1	0	1	1	1	1	0
1	1	0	0	0	1	1	1	1	1	1	0
1	1	1	0	0	1	x	1	x	1	x	0

From new J and K values, determine what the next states will be.

$$
\begin{array}{ll}
J_{A}=\overline{Q_{C}} & K_{A}=1 \\
J_{B}=1 & K_{B}=Q_{A} \\
J_{C}=1 & K_{C}=\overline{Q_{A}} Q_{B}
\end{array}
$$

Seq Gen State diagram

Q_{A}	Q_{B}	Q_{C}	$Q_{A}+$	$Q_{B}+$	$Q_{C}+$
0	0	0	1	1	1
0	0	1	0	1	1
0	1	0	1	1	1
0	1	1	0	1	0
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	0	1
1	1	1	0	0	1

Any state diagram

- A random state diagram may have a counting mechanism, but it also may be random.
- There may be states that are "islands".
- You can use the techniques for counters to convert any state diagram into a circuit.
- If you have leftover states that you don't care about, you can also interpolate where unassigned states will go based on the circuitry by completing the table retroactively as we showed

Summary

- A sequence generator increments through a series of numbers eventually returning to the first number
- If not all values are used within a sequence, not all values will appear within the state diagram. In order to have a complete state diagram, it needs to be derived which states will succeed other states to ensure that a random starting state will eventually insert into the sequence.

References

