# Counters and Sequence Generators

CMSC 313 Raphael Elspas

## Counter

- Sometimes we want to count numbers and store their values in a series of flip flops.
- We'll design a counter with several flip flops connected in a cascade.
- Example: if we want to count 0-7, we need 3 flip flops to store values 000-111, and then connect them in the right way so that after 111, the values go back to zero.
- The tricky part is coming up with the design that works for every state

## 0-3 Counter

- Let's design a counter that counts 0→1→2→3→0 (back to 0 in a loop) with JK flip flops that is triggered by positive edge clock cycles.
- We know we will need 2 flip flops.
- Let's draw a state table and state diagram for all state transitions



| $Q_A$ | $Q_B$ | Q <sub>A</sub> + | Q <sub>B</sub> + |
|-------|-------|------------------|------------------|
| 0     | 0     | 0                | 1                |
| 0     | 1     | 1                | 0                |
| 1     | 0     | 1                | 1                |
| 1     | 1     | 0                | 0                |

## 0-3 Counter (cont.)

- We need to find how to connect the JK flip flops together.
- Let's find the JK inputs required to convert  $Q_A$  to  $Q_A$ + and  $Q_B$  to  $Q_B$ +
- Extend state table so JK values are colinear with State transitions
- Values are labeled x when there are multiple ways to get a transition. E.g.to go from Q<sub>A</sub> = 0 to Q<sub>A</sub> = 0, either J=0, K=0 or J=0, K=1. Since K can be either value, we mark it as a don't care.

| $Q_A$ | $Q_B$ | Q <sub>A</sub> + | $Q_B$ +          | J <sub>A</sub> | $\mathbf{K}_{A}$ | $J_B$ | $K_B$ |
|-------|-------|------------------|------------------|----------------|------------------|-------|-------|
| 0     | 0     | 0                | 1                | 0              | Х                | 1     | Х     |
| 0     | 1     | 1                | 0                | 1              | Х                | Х     | 1     |
| 1     | 0     | 1                | 1                | X              | 0                | 1     | Х     |
| 1     | 1     | 0                | 1<br>0<br>1<br>0 | X              | 1                | Х     | 1     |

# 0-3 Counter (cont.)

• From all J K values design circuit with K Maps in terms of current states Q<sub>A</sub> and Q<sub>B</sub>.



#### 0-3 Counter (cont.)



You can read the value of the counter by reading the values at  $Q_A$  and  $Q_B$ .

## **Bidirectional counter**

- Let's make a 2 bit counter that counts both up and down  $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow (back to 0) and 3 \rightarrow 2 \rightarrow 1 \rightarrow 0 \rightarrow (back to 3)$
- We want to control it going up or down, so let's use an input for control
- Another constraint: The MSB shall use a T flip flop and the LSB shall use a D flip flop
- Let's design!

## State diagram and table

We now need another set of arrows on our diagram, as well as inputs describing what the next state is depending on input



| ) | X | $Q_A$ | $Q_B$ | Q <sub>A</sub> + | Q <sub>B</sub> + |
|---|---|-------|-------|------------------|------------------|
|   | 0 | 0     | 0     | 0                | 1                |
|   | 0 | 0     | 1     | 1                | 0                |
|   | 0 | 1     | 0     | 1                | 1                |
|   | 0 | 1     | 1     | 0                | 0                |
|   | 1 | 0     | 0     | 1                | 1                |
|   | 1 | 0     | 1     | 0                | 0                |
|   | 1 | 1     | 0     | 0                | 1                |
|   | 1 | 1     | 1     | 1                | 0                |

#### State design

• Populate T and D with excitation table

| Combined excitation table for T and D |   |    |   |   |  |  |  |  |  |
|---------------------------------------|---|----|---|---|--|--|--|--|--|
|                                       | Q | Q+ | Т | D |  |  |  |  |  |
|                                       | 0 | 0  | 0 | 0 |  |  |  |  |  |
|                                       | 0 | 1  | 1 | 1 |  |  |  |  |  |
|                                       | 1 | 0  | 1 | 0 |  |  |  |  |  |
|                                       | 1 | 1  | 0 | 1 |  |  |  |  |  |

| Х | $\mathbf{Q}_{A}$ | $Q_B$ | Q <sub>A</sub> + | Q <sub>B</sub> + | Т | D |
|---|------------------|-------|------------------|------------------|---|---|
| 0 | 0                | 0     | 0                | 1                | 0 | 1 |
| 0 | 0                | 1     | 1                | 0                | 1 | 0 |
| 0 | 1                | 0     | 1                | 1                | 0 | 1 |
| 0 | 1                | 1     | 0                | 0                | 1 | 0 |
| 1 | 0                | 0     | 1                | 1                | 1 | 1 |
| 1 | 0                | 1     | 0                | 0                | 0 | 0 |
| 1 | 1                | 0     | 0                | 1                | 1 | 1 |
| 1 | 1                | 1     | 1                | 0                | 0 | 0 |
|   |                  |       | -                |                  |   |   |

#### State design

| Х | $Q_A$ | $Q_{B}$ | Q <sub>A</sub> + | Q <sub>B</sub> + | Т | D |
|---|-------|---------|------------------|------------------|---|---|
| 0 | 0     | 0       | 0                | 1                | 0 | 1 |
| 0 | 0     | 1       | 1                | 0                | 1 | 0 |
| 0 | 1     | 0       | 1                | 1                | 0 | 1 |
| 0 | 1     | 1       | 0                | 0                | 1 | 0 |
| 1 | 0     | 0       | 1                | 1                | 1 | 1 |
| 1 | 0     | 1       | 0                | 0                | 0 | 0 |
| 1 | 1     | 0       | 0                | 1                | 1 | 1 |
| 1 | 1     | 1       | 1                | 0                | 0 | 0 |



 $D = \overline{Q_B}$ 

#### 0-3 up/down counter



# Sequence Generator

- What if we want to count ranges that are not a power of 2?
- We will have unused states
- Its possible to start in one of the states and have undefined behavior.
- We can either:
  - We can force our flip flops to start with a certain states
  - We can interpolate states
- What if we want to count out of order?
- A sequence generator is a counter where any sequence of numbers will repeat in a cycle.

# Sequence Generator

 Let's create a sequence with pattern 1→3→2→7→1 (repeat)

Excitation table for JK

| Q Out            | Q Output<br>Present Next<br>State State |                |    |  |  |
|------------------|-----------------------------------------|----------------|----|--|--|
| Present<br>State |                                         | J <sub>n</sub> | Kn |  |  |
| 0                | 0                                       | 0              | х  |  |  |
| 0                | 1                                       | 1              | x  |  |  |
| 1                | 0                                       | х              | 1  |  |  |
| 1                | 1                                       | x              | 0  |  |  |

| Q <sub>A</sub> | $Q_B$ | $Q_{C}$ | Q <sub>A</sub> + | Q <sub>B</sub> + | Q <sub>C</sub> + | J <sub>A</sub> | $\mathbf{K}_{A}$ | $J_B$ | $K_B$ | J <sub>C</sub> | K <sub>C</sub> |
|----------------|-------|---------|------------------|------------------|------------------|----------------|------------------|-------|-------|----------------|----------------|
| 0              | 0     | 0       |                  |                  |                  |                |                  |       |       |                |                |
| 0              | 0     | 1       | 0                | 1                | 1                | 0              | Х                | 1     | х     | Х              | 0              |
| 0              | 1     | 0       | 1                | 1                | 1                | 1              | Х                | Х     | 0     | 1              | х              |
| 0              | 1     | 1       | 0                | 1                | 1<br>1<br>0      | 0              | Х                | Х     | 0     | Х              | 1              |
| 1              | 0     | 0       |                  |                  |                  |                |                  |       |       |                |                |
|                |       | 1       |                  |                  |                  |                |                  |       |       |                |                |
| 1              | 1     | 0       |                  |                  |                  |                |                  |       |       |                |                |
| 1              | 1     | 1       | 0                | 0                | 1                | x              | 1                | Х     | 1     | х              | 0              |

Seq Gen (cont.) Kmaps K<sub>A</sub>Q<sub>B</sub>Q<sub>C</sub>00  $\mathsf{J}_\mathsf{A}$  $Q_B Q_C$ 01 11 10 01 00 11 10 Q<sub>A</sub> Q<sub>A</sub>  $Q_B Q_C | Q_A + Q_B + Q_C + | J_A K_A J_B K_B J_C K_C$  $Q_A$ 0 0 0 0 Х Х Х Х Х 0 0 0 1 1 Х Х Х K<sub>B</sub>QBQC00 0 0 0 1 1 0 0 Х Х  $K_A = 1$ Х  $J_A = \overline{Q}_C$ J<sub>B</sub> 、Q<sub>B</sub>Q<sub>C</sub> 0 1 0 1 1 1 Х 0 Х 1 1 Х 01 10 11 00 01 11 10  $\mathsf{Q}_\mathsf{A}$ Q<sub>A</sub> x x 0 Х 0 0 0 1 1 1 0 0 0 0 Х 0 Х Х Х Х 0 1 0 1 1 Х х Х K<sub>C</sub>QBQC00 0 1 1 J<sub>C</sub> Q<sub>B</sub>Q<sub>C</sub>  $K_B = Q_A$  $J_{B} = 1$ 1 1 0 10 01 11 11 10 Q<sub>A</sub> 0 01 QA 1 1 1 0 Х Х 0 1 0 1 1 Х 0 Х 0 Х Х Х Х 1 0 Х 1 Х Х  $J_C = 1$  $K_{C} = \overline{Q}_{A}Q_{B}$ 

# Seq Gen

• We can draw a circuit from our equations



# Seq Gen State diagram



# Seq Gen (cont.)

| $Q_A$ | $Q_B$ | $Q_{C}$ | Q <sub>A</sub> + | Q <sub>B</sub> + | Q <sub>C</sub> + | $J_A$ | $\mathbf{K}_{A}$ | $J_B$ | $K_B$ | J <sub>C</sub> | K <sub>c</sub> |
|-------|-------|---------|------------------|------------------|------------------|-------|------------------|-------|-------|----------------|----------------|
| 0     | 0     | 0       |                  |                  |                  |       |                  |       | 0     |                |                |
| 0     | 0     | 1       | 0                | 1                | 1                |       |                  |       |       |                |                |
| 0     | 1     | 0       | 1                | 1                | 1                | 1     | Х                | Х     | 0     | 1              | Х              |
|       |       | 1       |                  | 1                | 0                | 0     | Х                | Х     | 0     | Х              | 1              |
| 1     | 0     | 0       |                  |                  |                  | 1     | 1                | 1     | 1     | 1              | 0              |
| 1     | 0     | 1       |                  |                  |                  | 0     | 1                | 1     | 1     | 1              | 0              |
| 1     | 1     | 0       |                  |                  |                  | 1     | 1                | 1     | 1     | 1              | 0              |
| 1     | 1     | 1       | 0                | 0                | 1                | x     | 1                | Х     | 1     | х              | 0              |

- Let's find out what happens to the other states and their transitions.
- From J and K equations, find what values the don't cares are being used as (zeros or ones)

$$J_{A} = \overline{Q_{C}} \qquad K_{A} = 1$$
$$J_{B} = 1 \qquad K_{B} = Q_{A}$$
$$J_{C} = 1 \qquad K_{C} = \overline{Q_{A}}Q_{B}$$

# Seq Gen (cont.)

| Q <sub>A</sub> | $Q_B$ | $Q_{C}$ | Q <sub>A</sub> + | Q <sub>B</sub> + | Q <sub>C</sub> + | J <sub>A</sub> | $\mathbf{K}_{A}$ | $J_B$ | $K_B$ | J <sub>C</sub> | K <sub>c</sub> |
|----------------|-------|---------|------------------|------------------|------------------|----------------|------------------|-------|-------|----------------|----------------|
| 0              | 0     | 0       | 1                | 1                | 1<br>1<br>1      | 1              | 1                | 1     | 0     | 1              | 0              |
| 0              | 0     | 1       | 0                | 1                | 1                | 0              | Х                | 1     | Х     | Х              | 0              |
| 0              | 1     | 0       | 1                | 1                | 1                | 1              | Х                | Х     | 0     | 1              | Х              |
| 0              | 1     | 1       | 0                | 1                | 0<br>1<br>1<br>1 | 0              | Х                | Х     | 0     | Х              | 1              |
| 1              | 0     | 0       | 0                | 1                | 1                | 1              | 1                | 1     | 1     | 1              | 0              |
| 1              | 0     | 1       | 0                | 1                | 1                | 0              | 1                | 1     | 1     | 1              | 0              |
| 1              | 1     | 0       | 0                | 0                | 1                | 1              | 1                | 1     | 1     | 1              | 0              |
| 1              | 1     | 1       | 0                | 0                | 1                | x              | 1                | х     | 1     | х              | 0              |

From new J and K values, determine what the next states will be.

$$J_A = \overline{Q_C} \qquad K_A = 1$$
$$J_B = 1 \qquad K_B = Q_A$$
$$J_C = 1 \qquad K_C = \overline{Q_A}Q_B$$



## Any state diagram

RC

- A random state diagram may have a counting mechanism, but it also may be random.
- There may be states that are "islands".
- You can use the techniques for counters to convert any state diagram into a circuit.
- If you have leftover states that you don't care about, you can also interpolate where unassigned states will go based on the circuitry by completing the table retroactively as we showed

# Summary

- A sequence generator increments through a series of numbers eventually returning to the first number
- If not all values are used within a sequence, not all values will appear within the state diagram. In order to have a complete state diagram, it needs to be derived which states will succeed other states to ensure that a random starting state will eventually insert into the sequence.

