
Registers
CMSC 313

Raphael Elspas

Register definition

● A register is a device that can store binary information

● A register can be made with flip flops

● Each flip flop can store 1 bit of data, so an n-bit register needs n flip flops.

FF FF FF FF FFFFRegister

Loading and reading

● Data can be loaded into the register in two ways: serially, or in parallel

● Data can be read from the register in two ways: serially, or in parallel

● This produces 4 different combinations in which registers can be made: Serial

in, serial out (SISO); Serial in, parallel out (SIPO), parallel in, serial out

(PISO), and parallel in, parallel out (PIPO).

● Thinking: What are the tradeoffs of parallel vs serial i/o?

● The last of these (PIPO) is the most powerful, lets see how to build it.

Serial in serial out (SISO)

DA QA

QA

DB QB

QB

clk

DC QC

QC

write

DC QC

QC

Serial data input

output

Example

● If I put a 1 in for one clock cycle, and 0s for 3 clock cycles, I will get this

behavior

● A serial input shift register takes n clock cycles to write a value, where n is the

number of bits in the register

Serial in Parallel out (SIPO)

DA QA

QA

DB QB

QB

clk

DC QC

QC

write

DC QC

QC

Serial data input

outputRead: 1 clk cycles

Write: n clk cycles

Parallel in, parallel out (PIPO) register

DA QA

QA

DB QB

QB

clk

DC QC

QC

write

DC QC

QC

input

outputRead: 1 clk cycles

Write: 1 clk cycles

Parallel in Serial out (PISO)

Read: n clk cycles

Write: 1 clk cycles

Has 2 functionalities:

1. Can store information

2. Can SHR (shift right) its contents

How is a register used?

● A register is used like a variable to store a value

● We can write to store a value to use it for later

● We can read a value (multiple times if needed) in the future

● If the register is a PIPO, It takes one clock cycle to write to a register, and one

clock cycle to read from a register.

● In a PIPO we can also write to a register and read its previous state in the

same clock cycle (because of the master slave design)

Register block diagram for PIPO

Write

enable
Reg (n-bit)

in

out

n

n

Written input data

Read output data

Register file

● It’s useful to have a large block of registers both conceptually and from an

implementation perspective

● A register file is a collection of registers where all the registers are the same

length.

● An n x m-bit register file will have n registers within, each register being able to

store m-bits each.
Reg 0

Reg 1

…

Reg n-1

n

m

Register file indexing (read)

● In order to access a specific register from 0 through N-1, we can use a MUX to

select which register to read from. The mux will have N select lines, each with a

width of

● To identify which of the registers we’re reading from, we’ll use an address to

index into the file

Reg 0

Reg 1

…

Reg n-1

M
U

X

n

m

m

m

log2n

address

Read

value

Register file indexing (write)

● Writing to a register requires 2 inputs: the data in and an enable to say that we actually

want to overwrite the data. Not having this would mean every clock cycle, the data would

be overwritten with whatever was on the input data lines

● To identify which of the registers we’re writing to, we’ll use an address to index into the file

● All write data inputs to each register are hooked up in parallel so data in will affect any

register with a write enable set to high

Reg 0

Reg 1

…

Reg n-1

M
U

X

m

m

log2n

Read

address

Read

value
DEC

log2n

Data in (width = m)

write

address

Register file (cont.)

● Let’s consider some design choices by looking at typical use cases in computer

operations. For example:

C = A + B

Where A and B are values in 2 different registers and C is a value in a third register.

● We’d like to read 2 values at once and write back a value in one clock cycle to

improve efficiency.

● We’d like to have independent read and write control, so we don’t write on every

cycle

Register file (2 read ports)

Reg 0

Reg 1

…

Reg n-1

M
U

X

m

m

log2n

Read address A

Read

value A

log2n

Data in (width = m)

write address

M
U

X

m

m

log2n

Read address B

Read

value B

Features: 1 write, 2 read on same clock cycle

inputs: write address, data in, read/write, read

address A, read address B

Outputs: read value A, read value B

D
E

M
U

X

Read/write

Register file block diagram

Register file

Address A

Address B

Input data

Address C

C

A B

Output data

Write enable

No lane width shown for

brevity

Address width = log2n

Data width = n

Read

addr
Write

addr

Write

data

Read

data

Register file block diagram example (read)

Address A

Address B

Input data

Address C

C

A B

Output data

0x3

0xC

Reg 3 = 0xA4F3

Reg 12 = 0x0019

0x00190xA4F3

0

Write enable

16x16-bit reg

Register file block diagram example (write)

Address A

Address B

Input data

Address C

C

A B

Output data

Reg 3 = 0xA4F3 → 0x0025

10x0025

Write enable

0x3

16x16-bit reg

Register file block diagram example (simultaneous r/w)

Address A

Address B

Input data

Address C

C

A B

Output data

Reg 3 = 0xA4F3 → 0x0025

Reg 5 = 0x0019

0x00190xA4F3

1

Write enable

0x0025

0x3

Note: The value read is the

previous value in a Write after

read system (WAR) and is the

updated value in a read after

write system (RAW).

0x3

0xC

16x16-bit reg

Write after read

(WAR)

Regs and ALU

● We can combine registers with an ALU to make a rudimentary computer

● Data from a register (or 2) can be sent to an ALU in order to perform a

computation

● The ALU will return a result. We can have this value stored to a new register

or to one of the input registers.

Regs and ALU
● I want to add A + B and store it in C.

● The outputs of the read values of the

reg file (A, B) are plugged into the ALU,

where they get added (A+B)

● Within one clock cycle the values get

output by the ALU and stored back in C

*In actual processors, the ALU can

have different runtimes depending on

operation. Therefore, in reality the

“execute” step of the ALU is considered

a separate clock cycle.

REG File

C

A B

Addr A

Addr B

Addr C

ALU
Add op

select

Regs and ALU example
● I want to subtract reg 2 (addr 2) from

reg 4 (addr 4) and store the difference

in reg 1 (addr 1)

Reg 4 = 0x04, Reg 2 = 0x02,

Reg 1 = 0x01

value of reg 4 = 0x000A,

value of reg 2= 0x0006,

op = (subtract) 0x1 (given for this

problem)

reg1 = 0x0004

REG File

C

A B

Addr A

Addr B

Addr C

ALU

0x01

0x04

0x02

0x000A 0x0006

0x0004

0x1

reg1 = reg4 – reg2

Summary

● Registers come in flavors relating to how the input and output

are moved in and out (serial/parallel)

● Register file is a set of registers connected together in parallel

● Register file can be connected to ALU to make operations on

specific variables

References

● https://electronics.stackexchange.com/questions/655621/help-with-register-

file-implementation-on-logisim

● https://www.cise.ufl.edu/~mssz/CompOrg/CDA-proc.html

● https://en.wikibooks.org/wiki/Microprocessor_Design/Register_File

● https://www.youtube.com/watch?v=7LmBcGiiYwk&list=PLmjEXDyU3L-

mSz3eG4_JwVZt2fSon3tQX&index=56

https://electronics.stackexchange.com/questions/655621/help-with-register-file-implementation-on-logisim
https://electronics.stackexchange.com/questions/655621/help-with-register-file-implementation-on-logisim
https://www.cise.ufl.edu/~mssz/CompOrg/CDA-proc.html
https://en.wikibooks.org/wiki/Microprocessor_Design/Register_File
https://www.youtube.com/watch?v=7LmBcGiiYwk&list=PLmjEXDyU3L-mSz3eG4_JwVZt2fSon3tQX&index=56
https://www.youtube.com/watch?v=7LmBcGiiYwk&list=PLmjEXDyU3L-mSz3eG4_JwVZt2fSon3tQX&index=56

	Slide 1: Registers
	Slide 2: Register definition
	Slide 3: Loading and reading
	Slide 4: Serial in serial out (SISO)
	Slide 5: Example
	Slide 6: Serial in Parallel out (SIPO)
	Slide 7: Parallel in, parallel out (PIPO) register
	Slide 8: Parallel in Serial out (PISO)
	Slide 9: How is a register used?
	Slide 10: Register block diagram for PIPO
	Slide 11: Register file
	Slide 12: Register file indexing (read)
	Slide 13: Register file indexing (write)
	Slide 14: Register file (cont.)
	Slide 15: Register file (2 read ports)
	Slide 16: Register file block diagram
	Slide 17: Register file block diagram example (read)
	Slide 18: Register file block diagram example (write)
	Slide 19: Register file block diagram example (simultaneous r/w)
	Slide 20: Regs and ALU
	Slide 21: Regs and ALU
	Slide 22: Regs and ALU example
	Slide 23: Summary
	Slide 24: References

