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Register definition

● A register is a device that can store binary information

● A register can be made with flip flops

● Each flip flop can store 1 bit of data, so an n-bit register needs n flip flops.
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Loading and reading

● Data can be loaded into the register in two ways: serially, or in parallel

● Data can be read from the register in two ways: serially, or in parallel

● This produces 4 different combinations in which registers can be made: Serial 

in, serial out (SISO); Serial in, parallel out (SIPO), parallel in, serial out 

(PISO), and parallel in, parallel out (PIPO).

● Thinking: What are the tradeoffs of parallel vs serial i/o?

● The last of these (PIPO) is the most powerful, lets see how to build it.



Serial in serial out (SISO)
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Example

● If I put a 1 in for one clock cycle, and 0s for 3 clock cycles, I will get this 

behavior

● A serial input shift register takes n clock cycles to write a value, where n is the 

number of bits in the register



Serial in Parallel out (SIPO)
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Parallel in, parallel out (PIPO) register
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Parallel in Serial out (PISO)

Read: n clk cycles

Write: 1 clk cycles

Has 2 functionalities:

1. Can store information

2. Can SHR (shift right) its contents



How is a register used?

● A register is used like a variable to store a value

● We can write to store a value to use it for later

● We can read a value (multiple times if needed) in the future

● If the register is a PIPO, It takes one clock cycle to write to a register, and one 

clock cycle to read from a register.

● In a PIPO we can also write to a register and read its previous state in the 

same clock cycle (because of the master slave design)



Register block diagram for PIPO
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Register file

● It’s useful to have a large block of registers both conceptually and from an 

implementation perspective

● A register file is a collection of registers where all the registers are the same 

length.

● An n x m-bit register file will have n registers within, each register being able to 

store m-bits each.
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Register file indexing (read)

● In order to access a specific register from 0 through N-1, we can use a MUX to 

select which register to read from. The mux will have N select lines, each with a 

width of 

● To identify which of the registers we’re reading from, we’ll use an address to 

index into the file
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Register file indexing (write)

● Writing to a register requires 2 inputs: the data in and an enable to say that we actually 

want to overwrite the data. Not having this would mean every clock cycle, the data would 

be overwritten with whatever was on the input data lines

● To identify which of the registers we’re writing to, we’ll use an address to index into the file

● All write data inputs to each register are hooked up in parallel so data in will affect any 

register with a write enable set to high

Reg 0

Reg 1

…

Reg n-1

M
U

X

m

m

log2n

Read 

address

Read 

value
DEC

log2n

Data in (width = m)

write 

address



Register file (cont.)

● Let’s consider some design choices by looking at typical use cases in computer 

operations. For example:

C = A + B

Where A and B are values in 2 different registers and C is a value in a third register.

● We’d like to read 2 values at once and write back a value in one clock cycle to 

improve efficiency.

● We’d like to have independent read and write control, so we don’t write on every 

cycle



Register file (2 read ports)
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Register file block diagram
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Register file block diagram example (read)
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Register file block diagram example (write)
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Register file block diagram example (simultaneous r/w)
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Regs and ALU

● We can combine registers with an ALU to make a rudimentary computer

● Data from a register (or 2) can be sent to an ALU in order to perform a 

computation

● The ALU will return a result. We can have this value stored to a new register 

or to one of the input registers.



Regs and ALU
● I want to add A + B and store it in C. 

● The outputs of the read values of the 

reg file (A, B) are plugged into the ALU, 

where they get added (A+B)

● Within one clock cycle the values get 

output by the ALU and stored back in C

*In actual processors, the ALU can 

have different runtimes depending on 

operation. Therefore, in reality the 

“execute” step of the ALU is considered 

a separate clock cycle.
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Regs and ALU example
● I want to subtract reg 2 (addr 2) from 

reg 4 (addr 4) and store the difference 

in reg 1 (addr 1)

Reg 4 = 0x04, Reg 2 = 0x02, 

Reg 1 = 0x01

value of reg 4 = 0x000A,  

value of reg 2= 0x0006,

op = (subtract) 0x1 (given for this 

problem)

reg1 = 0x0004
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Summary

● Registers come in flavors relating to how the input and output 

are moved in and out (serial/parallel)

● Register file is a set of registers connected together in parallel

● Register file can be connected to ALU to make operations on 

specific variables
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