
Computer Organization
CMSC 313

Raphael Elspas

von Neumann architecture

● The von Neumann architecture is a scheme that includes the following

components

● A processing unit with both an arithmetic logic unit and processor registers

● A control unit that includes an instruction register and a program counter

● Memory that stores data and instructions

● External mass storage

● Input and output mechanisms

von Neumann architecture bus

● The bus in the von Neumann architecture is shared between all major

components

Busses

● There are 3 kinds of busses in the von Neumann architecture

Data Bus
A bidirectional communication path that transfers data

between the CPU, memory, and I/O devices.

Address Bus

A unidirectional communication path used by the

CPU to reference physical addresses in memory and

I/O devices.

Control Bus
A set of communication paths that transmit control

signals for managing system operations.

Computer components

● CPU

○ Register

○ ALU

● Memory

● Inputs

● Outputs

Special registers

● Program Counter (PC)

○ Keeps track of the memory address of the next instruction to be fetched and

executed.

○ Essentially a number that gets incremented after every instruction is read.

○ Sometimes the number has to jump forwards or backwards if the outcome

of an instructions execution relates to the control flow of the program

Special registers (cont.)

● Instruction Register (IR)

○ The Instruction Register (IR) is a register inside the central processing unit (CPU) of a

computer that holds the current instruction being executed or decoded. It is part of

the CPU's control unit, which manages the execution of instructions and the flow of

data within the processor.

○ The Instruction Register essentially serves as a temporary storage location for the

instruction being processed. It allows the CPU to hold and manipulate the instruction

data without repeatedly accessing the main memory during the execution of each

stage in the Fetch-Decode-Execute cycle.

Fetch Decode Execute

● Fetch

○ The CPU fetches the next instruction from the memory location pointed to by the

program counter (PC) and loaded into the Instruction Register (IR)

○ The program counter (PC) is then incremented to point to the next instruction.

● Decode

○ The fetched instruction is decoded to determine the operation to be performed and

the operands involved.

○ The control unit extracts information about the operation to be performed and the

operands involved.

● Execute

○ The CPU carries out the decoded instruction, performing the specified operation on

the data.

○ This stage may involve arithmetic or logical operations, data movement, control

transfer, or other actions depending on the instruction.

CPU architecture

● The PC indexes into the reg file and

copies the next instruction from

memory into the IR.

● The Instruction is decoded and the

correct operation and data (or

address parts depending on the) are

sent to the ALU

● The ALU will compute an output and

store it in a register

Machine code and assembly intro

000 001 011

111 010000

ADD R1, R3

JMP 32

Assembly is the human readable

version of the 1s and 0s
Machine code are the

1s and 0s

The set of instructions available is called

the Instruction Set Architecture (ISA)

Decoding Machine code instruction

● The bit pattern appearing in the op-code field indicates which of the

elementary operations, such as STORE or JUMP, is requested by the

instruction.

● The bit patterns found in the operands field provide more detailed information

about the operation specified by the op-code.

● Another bit specifies whether the data in the operand should be treated as a

register or an immediate value

Addressing mode

“addressing mode” bit

● Some architectures use an “addressing

mode” bit, and others don’t.

● In this architecture, if addressing mode

bit = 1, treat the operand as a value

● If the addressing bit = 0, treat the

operand as a register number

Machine code Assembly code Description

011 1 000010 ADD #2 Load the value 2 into the Accumulator

010 0 001101 SUB 13 Subtract register 13 from the accumulator

Addressing mode

Immediate input

● Let’s assume I have this configuration:

● Let’s also assume this decoder has

access to all parts of a machine instruction:
○ a) the opcode

○ b) the addressing mode

○ b) the operand(s) [one of which is the destination]

● How does the addressing bit control

immediate or non-immediate instructions?

● Use a MUX to control input.

● When MUX select = 1, choose immediate input

When MUX select = 0, choose B output of

register file

Decoder

Immediate input

● Let’s assume I have this configuration:

● Let’s also assume this decoder has

access to all parts of a machine instruction:
○ a) the opcode

○ b) the addressing mode

○ b) the operand(s) [one of which is the destination]

● How does the addressing bit control

immediate or non-immediate instructions?

● Use a MUX to control input.

● When MUX select = 1, choose immediate input

When MUX select = 0, choose B output of

register file

Decoder

Immediate input (cont.)
● Given this instruction:

● Input = 10 (immediate value 2)

● op code = 011(add)

● addr mode = 1

● D addr = 0 (reg 0)

● we = 1 (write enable because we are

storing val in R0)

● A addr = 0 (reg 0)

● B addr = <nothing assigned>

Machine code assembly Meaning

011 1 000 010 ADD R0, #2 R0 = R0 + 2

Decoder

addr mode = 1

op code = 011

D addr = 0

we = 1

A addr = 0

= 2

Data, Address, Control

Immediate input (cont.)

● Given this instruction:

● op code = 011(add)

● addr mode = 0

● D addr = 101 (R5)

● we = 1 (write enable because we are

storing val in R5)

● A addr = 101 (R5)

● B addr = 10 (R2)

Machine code assembly Meaning

011 0 101 010 ADD R5, R2 R5 = R5 + R2

Decoder

addr mode = 1

op code = 011

D addr = 5

we = 1

A addr = 5

B addr = 2

Data, Address, Control

Memory

● We can use memory to store the instructions that make up the program

● A memory is a set of storage elements with a read port to access the stored

values and a way to initialize or write the values.

● Random Access Memory (RAM) has both read and write ports

● Read-Only Memory (ROM) had a read port and some way of initializing its

contents

● ROM and RAM can be designed in a similar way to the register file (with a

multiplexer).

Instruction Memory

● We can use memory to hold the

processor instructions.

○ The memory would output the

machine code instruction

stored at the given address

○ How do we know what address

to read the instruction from?

○ Use the PC

Memory

Memory

addr

Program counter (PC)

● A program counter is then used to provide

the address of the instruction being

executed.

● The PC is incremented on each clock edge.

● The combination of the PC and memory

provides a generic control unit.

○ However, it is limited to repeatedly

executing all stored instructions in

memory.

● We could introduce a jump instruction

(JMP) which could add some flexibility

○ A JMP instruction would set the PC to

a different target point in the program

○ JMP 12 sets the PC = 12

Memory

Memory

addr

Jump (concept)

● Jumping allows you to change what instruction you are currently on.

● We can jump by modifying the Program Counter, so the next instruction is

something other than the “next instruction”.

● Examples:

Inst# assembly

0 Mov R0, PC

1 Add R0 #32

2 JMP #5

3 ADD R0, #1

4 MOV R1, R2

5 MUL R1, R0

Instructions 3 and 4 will

always be skipped

Inst# assembly

0 Mov R0, PC

1 Add R0 #32

2 ADD R0, #1

3 JMP #1

4 MOV R1, R2

5 MUL R1, R0

You can also use

jumps to make loops

Simple Program Simple Program

Jump Implementation

● How would I design a circuit to change the

PC to a different value?

● I need another ALU that allows several

type of jumps (we’ll see some in a moment)

● Remember an ALU just performs variable

operations based on an op code

Machine code assembly Meaning

110 010000 JMP #16 PC = 16

Note: Made

up machine

instructions

JMP immediate

PC = B

16

A B

Flags
● Information about the last operation performed is stored as a flag.

● A flag is a 1 bit values that indicate a true or false statement about a past

operation. Some examples include:

○ C = carry out, 1 if the last computation had a carry bit

○ Z = zero, 1 if the last computation resulted in a zero

○ OV = overflow, 1 if the last computation overflowed

○ N = negative, 1 if the last computation resulted in a

negative number

● Sometime a flag has no meaning for an operation, i.e. JMP does not

generate any flags, XOR generates Z & N flag, but not C & OV.

● Since these values are only 1 bit, some processors may combine each of

these values into the same register. This register is sometimes called the

status register (SR).

Jump

● In C++ I can use if else statements to change my “location” in code, so I

don’t have to run every instruction

● I can do the same thing in assembly using flags.

● First I perform c = a – b, then check the Negative and zero flag.
○ c negative: a < b → N = 1, Z = 0

○ c positive: a > b → N = 0, Z = 0

○ c zero: a = b → Z = 1, Note that it doesn’t matter what N flag is equal to.

if (a > b) {
foo()

} else {
bar()

}

Conditional Jump

● Therefore, I need to break every conditional jump into at least 2 instructions

● Where SUB is the subtract instruction and BNC is branch (jump) if negative

flag = 0.

● We call conditional jumps branches, since more than one path in the code

can run depending on a condition.

if (a > b) {
foo()

} else {
bar()

}

1. SUB b, a
2. BNC #5
3. foo()
4. JMP #6
5. bar()

Instruction level codeC++

Branch names

● Some example branch instruction shorthand we’ll use is
○ BNC: Branch negative clear

■ Ex: BNC #12 means “if N flag = 0, PC = 12. else PC = PC +1”

○ BNS: Branch negative set

■ Ex: BNS #12 means “if N flag = 1, PC = 12. else PC = PC +1”

○ BCC: Branch carry clear

○ BCS: Branch carry set

○ BZC: Branch zero clear

○ BZS: Branch zero set

Jump Conditions

● Other JMP type instructions like BZS

(branch zero set) will jump only if the value

of the previous operation is zero.

PC

Machine code assembly Meaning

110 1 010000 BZS #32
If Z flag = 1: PC = 32

else: PC = PC + 1

Note: Made

up machine

instructions

Collecting Flags

● If an instruction doesn’t generate

a useful flag, we want to preserve

the flag from a previous

operation.

● Example: if an JMP operation

happens, I don’t want to edit Z or

N, I want their values preserved.

● In implementation, I can use a

MUX to guard values in our flip

flop/register and select either the

previous value or the new value

Branch implementation

…

PC +1

addr

PC +1

addr
0

1

1

0

z

z

New PC

Branch

inst

Other operation patterns

● Load from memory

○ A value is copied from Memory to a register

○ Usually two operands: memory addr & reg

● Store to memory

○ A value is copied from a register to memory

○ Usually two operand: reg & memory addr

● Load from immediate

○ A value is copied directly from the machine instruction to a register

○ Two operands: immediate value & reg

● Mov from reg to reg

○ Two operands: regA & regB

○ Can be implemented as regB = regA + 0 to save dedicated data wires. However, some flags

will be triggered by add, but not by Mov

References

● https://www.cise.ufl.edu/~mssz/CompOrg/CDA-proc.html

● https://wou.edu/las/cs/csclasses/cs160/VTCS0/MachineArchitecture/Lessons/

CPU/index.html

● Ivan Sekyonda’s slides

https://www.cise.ufl.edu/~mssz/CompOrg/CDA-proc.html
https://wou.edu/las/cs/csclasses/cs160/VTCS0/MachineArchitecture/Lessons/CPU/index.html
https://wou.edu/las/cs/csclasses/cs160/VTCS0/MachineArchitecture/Lessons/CPU/index.html

	Slide 1: Computer Organization
	Slide 2: von Neumann architecture
	Slide 3: von Neumann architecture bus
	Slide 4: Busses
	Slide 5: Computer components
	Slide 6: Special registers
	Slide 7: Special registers (cont.)
	Slide 8: Fetch Decode Execute
	Slide 9: CPU architecture
	Slide 10: Machine code and assembly intro
	Slide 11: Decoding Machine code instruction
	Slide 12: “addressing mode” bit
	Slide 13: Immediate input
	Slide 14: Immediate input
	Slide 15: Immediate input (cont.)
	Slide 16: Immediate input (cont.)
	Slide 17: Memory
	Slide 18: Instruction Memory
	Slide 19: Program counter (PC)
	Slide 20: Jump (concept)
	Slide 21: Jump Implementation
	Slide 22: Flags
	Slide 23: Jump
	Slide 24: Conditional Jump
	Slide 25: Branch names
	Slide 26: Jump Conditions
	Slide 27: Collecting Flags
	Slide 28: Branch implementation
	Slide 29: Other operation patterns
	Slide 30: References

