
x86 Architecture
CMSC 313

Raphael Elspas

Intel x86-64 architecture

● Based off the von-Neumann

● ALU, Control and Registers are

all in CPU

● Note registers are different than

memory (RAM)

● Instruction and data memory

share the same path between

memory and the CPU (labeled in

red)

X86-64 general purpose registers

● Intel 32-bit architecture has 8 general purpose registers

● 64-bit architecture has 16 general purpose registers

● Most intel processors these days are 64 bit

● Registers are designed to be “backwards compatible” and most can run on

both 32 and 64 bit architectures

○ Standardization is done through register naming conventions

○ EAX refers to a 32 bit register (can be read on 32 and 64 bit)

○ RAX refers to a 64 bit register (can only be read on 64 bit)

● Many of the GP registers have special uses

○ Can or cannot be used by specific instructions

○ Need to look up which register is used by which instruction

○ Depending on architecture (32/64 bit) register for a specific instruction may change

X86-64 registers

● RAX, EAX, AX, AH, AL share the same register

● They have different accesses and are different lengths

AH (8bits) AL (8bits)

AX (16 bits)

EAX (32 bits)

RAX (64 bits)

X86-64 registers (cont.)

● RAX, RBX, RCX, RDX

AH AL

AX (16 bits)

EAX (32 bits)

RAX (64 bits)

BH

BX (16 bits)

EBX (32 bits)

RBX (64 bits)

BL

CH CL

CX (16 bits)

ECX (32 bits)

RCX (64 bits)

DH

DX (16 bits)

EDX (32 bits)

RDX (64 bits)

DL

Example

● If I set ah to 5, what value will be read on

al, ax, eax, and rax in decimal?

test with: @ http://asmdebugger.com/

● Answer:

● al = 0

● ax = 0x0500 = 128010

● eax = 128010

● rax = 128010

AH AL

AX (16 bits)

EAX (32 bits)

RAX (64 bits)

mov ah, 5

http://asmdebugger.com/

Example

● If I set ah to 0xFF, and then add 2, what will

be read on al, ah, ax, eax, and rax in hex?

test with: @ http://asmdebugger.com/

● Answer: moving 0xff into ah, overwrites the sign bit of ah with a 1, producing

ah = -1. Therefore adding 2, ah = 1

● al = 0

● ah = 0x01

● ax = 0x0100

● eax = 0x0000 0100

● rax = 0x0000 0000 0000 0100 = 0x100

AH AL

AX (16 bits)

EAX (32 bits)

RAX (64 bits)

mov ah, 0xFF
add ah, 2

http://asmdebugger.com/

Example

● If I set ah to 0xFF, and then add 2, which

flags will be affected (OF, SF, CF, ZF)?

test with: @ http://asmdebugger.com/

● Answer: moving 0xff into ah, overwrites the sign bit of ah with a 1, producing

ah= -1. Therefore, after adding 2, ah = 1.

● OF = 0. -1 + 2 = (neg) + (pos) NO OVERFLOW

● SF = 0. -1 + 2 = 1. Result is positive

● CF = 1. -1 + 2 = 1111 11112 + 0000 00102 produces a carry out bit.

● ZF = 0. -1 + 2 = 1. Result is non-zero

AH AL

AX (16 bits)

EAX (32 bits)

RAX (64 bits)

mov ah, 0xFF
add ah, 2

http://asmdebugger.com/

X86-64 registers (cont.)

● RSI, ESI, SI share the same register, S stands for source

● RDI, EDI, DI share the same register, D stands for destination

● Not always used as source and destination, these are legacy names.

● These are general purpose registers

DI (16 bits)

EDI (32 bits)

RDI (64 bits)

SI (16 bits)

ESI (32 bits)

RSI (64 bits)

Stack registers

● The Stack pointer has accesses: RSP, ESP, SP share the same register

● Another register called RBP, EBP, and BP identifies the base of the stack.

● Is technically are general purpose registers, but shouldn’t be used for storing

temporary values

● Editing these should only be done when modifying the stack

BP (16 bits)

EBP (32 bits)

RBP (64 bits)

SP (16 bits)

ESP (32 bits)

RSP (64 bits)

X86-64 registers (cont.)

● R8 – R15 are registers only available on a 64 bit architecture

○ B stands for byte (1 byte)

○ W stands for word (2 bytes)

○ D stands for double word (4 bytes)

○ Q stands for quad word (8 bytes) (we leave out q when identifying the entire register

r#w (16 bits)

r#d (32 bits)

r# (64 bits)

r#b (8 bits)

X86-64 Instruction Pointer register

● RIP, EIP, IP identify the register that points to which instruction the CPU will

execute next.

● Same thing as the PC (Program Counter)

● Modifying this register will likely seg-fault your program

EIP (32 bits)

RIP (64 bits)

IP

Flags register

● RFLAGS, EFLAGS, FLAGS

● Stores carry flag, zero flag, sign

flag, overflow flag, many other flags

EFLAGS (32 bits)

RFLAGS (64 bits)

FLAGS

Summary of registers

Notes:

● MMX# and XMM#

registers we won’t

really use.

● MMX are for floating

point numbers

● XMM are for longer

length values

References

● Ivan Sekyonda’s slides

● https://en.wikipedia.org/wiki/FLAGS_register

● http://asmdebugger.com/

● https://kobzol.github.io/davis/

https://en.wikipedia.org/wiki/FLAGS_register
http://asmdebugger.com/
https://kobzol.github.io/davis/

	Slide 1: x86 Architecture
	Slide 2: Intel x86-64 architecture
	Slide 3: X86-64 general purpose registers
	Slide 4: X86-64 registers
	Slide 5: X86-64 registers (cont.)
	Slide 6: Example
	Slide 7: Example
	Slide 8: Example
	Slide 9: X86-64 registers (cont.)
	Slide 10: Stack registers
	Slide 11: X86-64 registers (cont.)
	Slide 12: X86-64 Instruction Pointer register
	Slide 13: Flags register
	Slide 14: Summary of registers
	Slide 15: References

