
x86 Assembly
CMSC 313

Raphael Elspas

Computer Level Hierarchy

● In this class we focused on level 0 and

level 4, an intro to level 1 & 2.

● Level 1 and 2 covered more in CMSC411

● Level 3 is covered in CMSC421

● Level 5 has been covered in previous

classes

Assembling vs compiling

int main() {
return 0

}

mov eax, 0x3F
xor rcx, rcx

0010100100010
0100100010100
10010...

C code Assembly Object (machine) code

compile assemble

Note: the examples of assembly, object

code, and executable code are not real

compiled or assembled versions of the c

code.

The C compiler has a built-in assembler

and linker, which allows us to not worry

about the assembly or linking step if we’re

just developing C code

1010000111010
0100110011000
110011...

link

Executable code

Assembly Language

● Low level programming language

● It uses human readable words to represent machine code

● Assembly is specific to the processors architecture

● Level “above” machine code

● An assembler converts assembly to object code (machine code)

● We will use the NASM Assembler for intel x86 assembly

● We will focus on 64-bit architecture, which can also run 32-bit assembly

○ Apple will not let you run 32 on 64-bit architecture

Basic NASM Syntax

● Assembly is written as lines rather than statements

● The Basic NASM syntax has 4 components on a typical line:

○ Label

○ Opcode

○ Operand(s)

○ Comment

Label: opcode operand(s) ; comment

Basic NASM Syntax: Label

● A label is an address to that line of code

● Followed by :

● Some words are reserved, like ADD

● Optional

● If label is not used, indent to keep lines neat

● Label can be on a line by itself

● Should be the first thing on a line

Label: opcode operand(s) ; comment

Basic NASM Syntax: Opcode

● An opcode is an instruction

● Not case sensitive. ADD = add

● Can be a:

○ machine instruction

○ an assembler directive (pseudo-instruction)

○ macro call

Label: opcode operand(s) ; comment

Basic NASM Syntax: Operand(s)

● Depends on opcode

● Can be a combination of

○ Registers

○ Constants

○ Memory references

○ Or empty (like for RET)

Label: opcode operand(s) ; comment

Intel syntax vs AT&T syntax

● Depending on your assembler, the operands may be expected in different

orders. Both are available for x86-64 assembly.

● There are two typical operand orders

○ Destination, source – called intel syntax

- we will use intel syntax for this class

○ Source, destination – called AT&T syntax

ADD eax, 5

ADD $5, %eax

These both mean:

eax = eax + 5

Basic NASM Syntax: comment

● Comments begin with ;

● Are optional, but encouraged

● No easy way to do multiline comments, you need ; before every comment

Label: opcode operand(s) ; comment

Sections

● One of the NASM assembler directives is the “SECTION” or “section” directive

● There are 4 predefined sections for the ELF format: .data, .bss, .rodata, .text

● The format for indicating the beginning of a section is the word “section”

followed by the section name. For example:

section .data

.data section

● The .data section has these properties:

● Example:

int x = 3;

in compiled C++ would go in the “.data” section

section .data ; initialized data
; writeable, not executable
; default alignment 8 bytes

.bss section

● .bss stands for Block Started by Symbol

● The .bss section has these properties:

● Example:

int x;

in compiled C++ would go in the “.bss” section

section .bss ; uninitialized data
; writeable, not executable
; default alignment 8 bytes

.rodata section

● The .rodata section has these properties:

● Example:

const float pi = 3.14;

in compiled C++ would go in the “.rodata” section

section .rodata ; initialized data
; read only, not executable
; default alignment 8 bytes

.text section

● The .text section is the only section where instructions go

● Example:

printf(); and

x = x + 2;

would go in the .text section

section .text ; not writeable, executable
; default alignment 16 bytes

Special section

● You can create your own sections by using a section name other than .data,

.bss, .rodata, and .text

● Don’t use quotes in the defining of your section.

● Write whatever you want here, but it’s not typically used for anything.

section “other” ; not writeable, not executable
; default alignment 1 byte

Summary

We store this file as

a .asm file

ISA Reference

● There are many references online to the ISA for x86-64

● below are some links, but there are many more locations to find x86 instruction

listings.

● Official x86 instruction listing: https://cdrdv2.intel.com/v1/dl/getContent/671200

● Compressed listing of x86 instructions: https://www.felixcloutier.com/x86/

● Has a description of reading instruction data sheets: http://ref.x86asm.net/

https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.felixcloutier.com/x86/
http://ref.x86asm.net/

Integer vs float operations

● Some operations use integers as inputs and others use floats.

● For example: ADD performs integer addition and FADD performs float addition.

● The operations that use floats require floating point registers as inputs and

cannot use integer registers as inputs

Common Instructions

● ADD – add 2 numbers

● SUB – subtract a number from another number

● INC – increment: add 1 to a number

● DEC – decrement: subtract 1 from a number

● MOV – mov a value from one location to another

● NOP – No Operation: do nothing

Logical Instructions

● AND – Logical and two numbers

● OR – logical or two numbers

● NOT – logical not a number

● XOR – logical xor two numbers

● SHL – logical Shift left

● SHR – logical Shift right

● SAL – Arithmetic Shift left

● SAR – Arithmetic Shift right

● ROL – logical Rotate left

● ROR – logical Rotate right

● RCL – rotate through carry left

● RCR – rotate through carry right

Arithmetic instructions

● NEG – 2s complement negation of operand

● MUL – unsigned multiply of operands

● IMUL – signed multiply of operands

● DIV – unsigned divide of operands

● IDIV – signed divide of operands

Subroutine instructions

● PUSH – push value onto stack

● POP – pop value from stack

● CALL – call a subroutine

● RET – return from subroutine

References

● Ivan Sekyonda’s slides

● https://en.wikipedia.org/wiki/FLAGS_register

● http://asmdebugger.com/

● https://cdrdv2.intel.com/v1/dl/getContent/671200

● https://www.felixcloutier.com/x86/

● http://ref.x86asm.net/

https://en.wikipedia.org/wiki/FLAGS_register
http://asmdebugger.com/
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.felixcloutier.com/x86/
http://ref.x86asm.net/

	Slide 1: x86 Assembly
	Slide 2: Computer Level Hierarchy
	Slide 3: Assembling vs compiling
	Slide 4: Assembly Language
	Slide 5: Basic NASM Syntax
	Slide 6: Basic NASM Syntax: Label
	Slide 7: Basic NASM Syntax: Opcode
	Slide 8: Basic NASM Syntax: Operand(s)
	Slide 9: Intel syntax vs AT&T syntax
	Slide 10: Basic NASM Syntax: comment
	Slide 11: Sections
	Slide 12: .data section
	Slide 13: .bss section
	Slide 14: .rodata section
	Slide 15: .text section
	Slide 16: Special section
	Slide 17: Summary
	Slide 18: ISA Reference
	Slide 19: Integer vs float operations
	Slide 20: Common Instructions
	Slide 21: Logical Instructions
	Slide 22: Arithmetic instructions
	Slide 23: Subroutine instructions
	Slide 24: References

