UMBC

X86 Assembly

CMSC 313
Raphael Elspas

UMBC

Computer Level Hierarchy

In this class we focused on level O and
level 4, an intro to level 1 & 2.

Level 1 and 2 covered more in CMSC411
Level 3 is covered in CMSC421

Level 5 has been covered in previous
classes

¥ UMBC

Assembling vs compiling

C code Assembly Object (machine) code Executable code

int main() {
return O

0010100100010 1010000111010

mov eax, Ox3F

0100100010100
l10010...

0100110011000
110011...

} Xor rcx, rcx

The C compiler has a built-in assembler Note: the examples of assembly, object
and linker, which allows us to not worry code, and executable code are not real

just developing C code code.

UMBC

Assembly Language

Low level programming language

It uses human readable words to represent machine code

Assembly is specific to the processors architecture

Level “above” machine code

An assembler converts assembly to object code (machine code)

We will use the NASM Assembler for intel x86 assembly

We will focus on 64-bit architecture, which can also run 32-bit assembly

o Apple will not let you run 32 on 64-bit architecture

UMBC

Basic NASM Syntax

e Assembly is written as lines rather than statements
e The Basic NASM syntax has 4 components on a typical line:

o Label
o Opcode
o Operand(s)

o Comment

Label: opcode operand(s) ; comment

UMBC

Basic NASM Syntax: Label

A label is an address to that line of code
Followed by :

Some words are reserved, like ADD
Optional

If label is not used, indent to keep lines neat
Label can be on a line by itself
Should be the first thing on a line

opcode operand(s) ; comment

UMBC

Basic NASM Syntax: Opcode

e An opcode is an instruction
e Not case sensitive. ADD = add
e Can be a:

o machine instruction

o an assembler directive (pseudo-instruction)

o macro call

operand(s) ; comment

UMBC

Basic NASM Syntax: Operand(s)

e Depends on opcode
e Can be a combination of

O

O

O

Registers

Constants

Memory references

Or empty (like for RET)

Label: opcode

; comment

UMBC

Intel syntax vs AT&T syntax

e Depending on your assembler, the operands may be expected in different
orders. Both are available for x86-64 assembly.
e There are two typical operand orders

o Destination, source — called intel syntax ADD eax, 5
- we will use intel syntax for this class

o Source, destination — called AT&T syntax ADD $5, %eax

These both mean:
eax=eax+5

UMBC

Basic NASM Syntax: comment

e Comments begin with ;
e Are optional, but encouraged
e No easy way to do multiline comments, you need ; before every comment

Label: opcode operand(s)

UMBC

Sections

e One of the NASM assembler directives is the “SECTION” or “section” directive

e There are 4 predefined sections for the ELF format: .data, .bss, .rodata, .text

e The format for indicating the beginning of a section is the word “section”
followed by the section name. For example:

W UMBC

.data section

e The .data section has these properties:

section .data ; initialized data

; writeable, not executable
; default alignment 8 bytes

e Example:
int x = 3;
in compiled C++ would go in the “.data” section

W UMBC

.bss section

e .bss stands for Block Started by Symbol
e The .bss section has these properties:

section .bss ; uninitialized data

; writeable, not executable
; default alignment 8 bytes

e Example:
int x;
in compiled C++ would go in the “.bss” section

W UMBC

.rodata section

e The .rodata section has these properties:

section .rodata ; initialized data
; read only, not executable

; default alignment 8 bytes

e Example:
const float pi = 3.14;
in compiled C++ would go in the “.rodata” section

W UMBC

text section

e The .text section is the only section where instructions go

section .text ; not writeable, executable

; default alignment 16 bytes

e Example:
printf(); and
X =X + 2;
would go in the .text section

UMBC

Special section

e You can create your own sections by using a section name other than .data,
.bss, .rodata, and .text
e Don’t use quotes in the defining of your section.

section “other” ; not writeable, not executable

; default alignment 1 byte

e \Write whatever you want here, but it's not typically used for anything.

UMBC

Summary

DIRECTIVES

—
SECTIONS

LABELS INSTRUCTIONS OPERANDS
))
global start
//’> section . text \\
start: mov rax, 0x02000004
mov rdi, 1
mov rsi, message
mov rdx, 13
syscall
mov rax, 0x02000001
xor rdi, rdi
\\\k syscall //
i section .data
{ message: | db "Hello, World", 10

R

.9

A

We store this file as
a .asmfile

UMBC

|ISA Reference

There are many references online to the ISA for x86-64

below are some links, but there are many more locations to find x86 instruction
listings.

Official x86 instruction listing: https://cdrdv2.intel.com/v1/dl/getContent/671200
Compressed listing of x86 instructions: https://www.felixcloutier.com/x86/

Has a description of reading instruction data sheets: http://ref.x86asm.net/

https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.felixcloutier.com/x86/
http://ref.x86asm.net/

UMBC

Integer vs float operations

e Some operations use integers as inputs and others use floats.

e For example: ADD performs integer addition and FADD performs float addition.

e The operations that use floats require floating point registers as inputs and
cannot use integer registers as inputs

UMBC

Common Instructions

ADD — add 2 numbers

SUB — subtract a number from another number
INC — increment: add 1 to a number

DEC — decrement: subtract 1 from a number
MOV — mov a value from one location to another
NOP — No Operation: do nothing

UMBC

Logical Instructions

AND - Logical and two numbers
OR - logical or two numbers
NOT — logical not a number
XOR - logical xor two numbers
SHL — logical Shift left

SHR — logical Shift right

SAL — Arithmetic Shift left

SAR — Arithmetic Shift right
ROL - logical Rotate left

ROR - logical Rotate right

RCL — rotate through carry left
RCR - rotate through carry right

UMBC

Arithmetic instructions

NEG — 2s complement negation of operand
MUL — unsigned multiply of operands

IMUL — signed multiply of operands

DIV — unsigned divide of operands

IDIV — signed divide of operands

UMBC

Subroutine Instructions

PUSH — push value onto stack
POP — pop value from stack
CALL - call a subroutine

RET — return from subroutine

UMBC

References

lvan Sekyonda’s slides
https://en.wikipedia.org/wiki/FLAGS register
http://asmdebugger.com/
https://cdrdv2.intel.com/vl/dl/getContent/671200
https://www.felixcloutier.com/x86/
http://ref.x86asm.net/

https://en.wikipedia.org/wiki/FLAGS_register
http://asmdebugger.com/
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://www.felixcloutier.com/x86/
http://ref.x86asm.net/

	Slide 1: x86 Assembly
	Slide 2: Computer Level Hierarchy
	Slide 3: Assembling vs compiling
	Slide 4: Assembly Language
	Slide 5: Basic NASM Syntax
	Slide 6: Basic NASM Syntax: Label
	Slide 7: Basic NASM Syntax: Opcode
	Slide 8: Basic NASM Syntax: Operand(s)
	Slide 9: Intel syntax vs AT&T syntax
	Slide 10: Basic NASM Syntax: comment
	Slide 11: Sections
	Slide 12: .data section
	Slide 13: .bss section
	Slide 14: .rodata section
	Slide 15: .text section
	Slide 16: Special section
	Slide 17: Summary
	Slide 18: ISA Reference
	Slide 19: Integer vs float operations
	Slide 20: Common Instructions
	Slide 21: Logical Instructions
	Slide 22: Arithmetic instructions
	Slide 23: Subroutine instructions
	Slide 24: References

