
x86 Assembly (cont.)
CMSC 313

Raphael Elspas

Addressing Modes

● Addressing modes refers to the way instruction operands are specified. We

need to consider the addressing mode for the different instructions

● Modes include:

○ Immediate

○ Direct

○ Indirect

○ Register

○ Register Indirect

○ Displacement

○ Stack

Immediate to register

EAX

EBX

ECX

EDX

EBP

…

Memory Address

MOV EAX, 1734 0x0000004

0x0000008

0x000000c

…

0x0000100

0x0000104

1734

EIP

Code section

Data section

MOV EAX, 1734

Register to register

EAX

EBX

ECX

EDX

EBP

…

Memory Address

MOV EAX, ECX 0x0000004

0x0000008

0x000000c

…

0x0000100

0x0000104

EIP

Code section

Data section

MOV EAX, ECX

Register indirect to register

EAX

EBX

ECX 0x0000104

EDX

EBP

…

Memory Address

MOV EAX, [ECX] 0x0000004

0x0000008

0x000000c

…

0x0000100

1734 0x0000104

EIP

Code section

Data section

MOV EAX, [ECX]
Note: Brackets are used to dereference:

the retrieve the value at this address

Memory to register

EAX

EBX

ECX

EDX

EBP

…

Memory

Address

MOV EAX, [0x0000104] 0x0000004

0x0000008

0x000000c

…

0x0000100

1734 0x0000104

EIP

Code section

Data section

MOV EAX, [0x0000104]

MOV EAX, [label]

or

label

Immediate to memory

Memory Address

MOV [0x0000104],

DWORD 1734

0x0000004

0x0000008

0x000000c

…

0x0000100

1734 0x0000104

EIP

Code section

Data section

MOV [0x0000104], DWORD 1734

1734

0x0000104

[0x0000104],

MOV [label], DWORD 1734

label

Addressing keywords

BYTE: 1 byte

WORD: 2 bytes

DWORD: 4 bytes

QWORD: 8 bytes

DWORD_PTR: represents an address

• 32 bits on 32 bit system (4 bytes)

• 64 bits on 64 bit system (8 bytes)

Immediate to register indirect

EAX 0x0000104

EBX

ECX

EDX

EBP

…

Memory Address

MOV [EAX],

DWORD 1734

0x0000004

0x0000008

0x000000c

…

0x0000100

1734 0x0000104

EIP

Code section

Data section

MOV [EAX], DWORD 1734

1734

Summary of addressing formats

MOV EAX, 1734 ; EAX = 1734

MOV EAX, ECX ; EAX = ECX

MOV EAX, [0x0000104] ; EAX = value at 0x0000104

MOV EAX, [label] ; EAX = value at address pointed to by label

MOV EAX, [ECX] ; EAX = value at address stored in ECX

MOV [0x0000104], DWORD 1734 ; move value 1734 to address 0x0000104

MOV [label], DWORD 1734 ; move value 1734 to address pointed to by label

MOV [EAX], DWORD 1734 ; move value 1734 to address stored in EAX

Example

● What will this do?

section .data
x dd 13
y dd 0

section .text
main: mov eax, [x]

mov ebx, x
inc eax
mov [y], eax

global main

Example

section .data
x dd 13
y dd 0

section .text
main: mov eax, [x] ; moves value of x into eax. Eax = 13

mov ebx, x ; moves address of x into ebx.
inc eax ; eax = 13+1 = 14
mov [y], eax ; moves value of eax into memory location that y points to.

global main ; indicates beginning of program

; This program does: y = x + 1

Addressing formats not allowed

● Memory to memory addressing is not allowed in x86

● You need to use an immediate value or a register as the step in between

moving memory to memory

Add [mem1] [mem2]
Mov [mem1] [mem2]

Clearing bits

● How do I clear the lower 4 bits of the AL register (8 bits long)?

● Answer: use AND instruction – Logical “and” two numbers

ANDing by 0 is always zero, ANDing by 1 preserves the other number

1010 1010 = what was in AL before
AND 1111 0000 = 0xF0

1010 0000 = result, lower 4 bits cleared

AND AL, 0xF0

Setting bits

● How do I set the lower 4 bits of the AL register?

● Answer: use OR instruction – Logical “or” two numbers

ORing by 1 is always one, ORing by 0 preserves the other number

1010 1010 = what was in AL before
OR 0000 1111 = 0x0F

1010 1111 = result, lower 4 bits set to 1

OR AL, 0x0F

Shift instructions

● SHL – Logical Shift left

● SHR – Logical Shift right

● SAL – Arithmetic shift left

● SAR – Arithmetic shift right

SHL/SAL

● Logical shift left and arithmetic shift left are the same operation

● The carry flag gets set to the value being shifted out

● A zero get carried into the new vacancy on the right

SHR vs SAR

● Logical shift right (SHR) and Arithmetic shift right (SAR) are not the same.

● SHR and SAR both shift the LSB into the Carry flag during shifting

● SHR always carries in a zero to the MSB.

● SAR carries a 0 into MSB for positive numbers and a 1 for negative numbers.

Rotate instructions

● ROL – logical Rotate left

● ROR – logical Rotate right

● RCL – rotate through carry left

● RCR – rotate through carry right

ROL vs RCL and ROR vs RCR

● ROR and ROL do not include CF

as an element in the rotation, but

they do copy the bit that rotates

over into CF

● RCR and RCL include the CF as

one of the elements in the

rotation. The CF flag gets set

automatically along the way.

Control Instructions

● JMP – jump

● JE/JZ – jump if equal/jump if zero

● JNE/JNZ – jump if not equal/jump if not zero

● JG/JNLE – jump if greater than/jump if not less than or equal

● JGE/JNL – jump if greater than or equal/jump if not less than

● CALL – call a procedure

● RET – return

String instructions

These operate on chunks of data, not really for “strings” in the traditional sense.

These are sometimes harder to use, since you need to keep track of information

in chunks

● MOVS/MOVSB/MOVSW/MOVSD – move string

● CMPS/CMPSB/CMPSW/CMPSD – compare string

● LODS/LODSB/LODSW/LODSD – load string

● STOS/STOSB/STOSW/STOSD – store string

NASM pseudo instructions

● Different from intel x86 arch

instructions

● They are still written in the same .asm

file. The assembler will correctly

interpret which keywords are NASM

pseudo instructions and which are

x86

● .data section uses keywords for

integers: DB, DW, DD, DQ

● .data section uses keywords for

floats: DT, DTQ

NASM pseudo instructions (cont.)

● .bss section uses keywords:

resb, resw, resd, resq

● equ is used to assign a constant

value to a symbol. These are

different from labels since labels

are an address and can point to

changing data.

Endianness

● The order that data is stored in memory

● Little Endian: least significant byte is stored at earlier address

○ Intel is stored in little endian

● Big Endian: the most significant byte is stored at earlier address

0x12345678

Data 0x 78 56 34 12

Little Endian

0x 12 34 56 78

Big Endian

Stored as

In memory

Ascii

● The terminal prints out characters in ascii.

● Characters are also read in in ascii. That means if you are entering a number,

the value will be stored as ascii and might need to be converted to an actual

number

● To convert ascii → number, subtract 48

● For multi-digit numbers, you must consider how you will reconstruct the whole

number. Therefore, each digit may need to individually be converted to be

interpreted.

● Ascii uses 1 byte to represent each character

Privilege mode

● Difference between kernel mode and user

mode is the privilege

● There are 4 privilege levels on x86

● CPL register stores the current privilege

level. Not general purpose.

● Privileged instructions can only execute

when CPL is 0.

● Kernel is the only one that can grant

access to memory.

System call

● A system call is way of requesting the kernel to do something for the user

because the user doesn’t have privileges for everything.

● A system call is basically a function with parameters

● Example:

● ssize_t is a type defined by the OS in types.h used for the return value

● write is the name of the system call and can be found in the file unistd_64.h

● The rest are parameters according to what the system call does and needs

ssize_t write(int fd, const void *buf, size_t count);

System call (cont.)

● To use System calls in intel 64 bit assembly you need to:

● Put the system call number in the RAX register

● The rest of the parameters are put in the following registers in order from left

to right: rdi, rsi, rdx, r10, r8, r9

● Extra parameters are placed on the stack

● Once set up, use the syscall instruction to

call the system call.

SYSCALL SETUP

Location Syscall reg purpose

RAX Syscall number

RDI 1st argument

RSI 2nd argument

RDX 3rd argument

R10 4th argument

R8 5th argument

R9 6th argument

Stack 7th + arguments

Don’t ask me why R8 comes before

R9, I didn’t write 64-bit x86

Syscall “write” example

● If I want to print to the screen, I have to use the write syscall.

● Read the docs for write: https://manpages.debian.org/unstable/manpages-

dev/write.2.en.html

● Write has 3 parameters:
○ fd – the file descriptor

○ buf – the string to write

○ count – the length of the string

● The write syscall is assigned the number 1

● Therefore, the register setup will look like this:

ssize_t write(int fd, const void *buf, size_t count);

Reg Value explanation

RAX 1 Syscall number

RDI 1 Std-out file descriptor

RSI Address to string String to print

RDX Length of string Number of chars to

print

https://manpages.debian.org/unstable/manpages-dev/write.2.en.html
https://manpages.debian.org/unstable/manpages-dev/write.2.en.html

File descriptors

● A file descriptor is a handle that an operating system uses to access files,

sockets, or other input/output (I/O) resources.

● In Linux, file descriptors are represented as non-negative integers.

● There are 3 standard streams that are typically pre-opened by the operating

system when a program starts, and they serve as default channels for input and

output.

● Syscalls typically use file descriptors to identify which resources are being used

fd# Name Purpose

0 Standard in (std-in) Take input from terminal

1 Standard out (std-out) Write output to terminal

2 Standard error (std-err) Catalog errors to the terminal

Common system calls

● You’ll always need the exit syscall so your program doesn’t seg fault. Seg

faults happens because the program continues to read the next instruction

after the end of the program

● More syscalls here: https://filippo.io/linux-syscall-table/

● You can find the syscall list on GL in file /usr/include/asm/unistd_64.h

Syscall name Number Description

Read 0 Read from file descriptor

Write 1 Write to file descriptor

Open 2 Open a file

Close 3 Close a file

Exit 60 Exit a program with an exit code

https://filippo.io/linux-syscall-table/

Hello world example

section .data
msg db "Hello World!", 10, 0

section .text
global main

main:
; Print "Hello, World!" message
mov rax, 1 ; Syscall number for sys_write
mov rdi, 1 ; File descriptor 1 (stdout)
mov rsi, msg ; Load address of the message (not value)
mov rdx, 13 ; Length of the message
syscall ; Invoke syscall to write the message

; Exit the program
mov rax, 60 ; Syscall number for sys_exit
xor rdi, rdi ; Exit code 0
syscall ; Invoke syscall to exit

Hello world example with computed string length
section .data

msg db "Hello World!", 10, 0
msg_len equ $ - msg

section .text
global main

main:
; Print "Hello, World!" message
mov rax, 1 ; Syscall number for sys_write
mov rdi, 1 ; File descriptor 1 (stdout)
mov rsi, msg ; Load address of the message (not value)
mov rdx, msg_len ; Length of the message
syscall ; Invoke syscall to write the message

; Exit the program
mov rax, 60 ; Syscall number for sys_exit
xor rdi, rdi ; Exit code 0
syscall ; Invoke syscall to exit

Note: equ computes a

value and does not

store the value at any

address. At assemble-

time, the value is

substituted into the

locations in code

where it is needed.

Note: $ computes the

address where the $ is

located. $ - msg

computes the

difference between the

current address and

the address pointed to

by msg

Syscall on 32-bit

● System calls will be different on different OS

● So is the location of the unistd.h file

● On intel the values of the calls are different between 32 and 64 bit

● The registers that take the arguments are also different between 64 and 32 bit

● 32 bit argument registers are:
○ EAX gets the call number

○ EBX gets the first argument

○ ECX gets the second

○ EDX gets the third

○ EDI gets the fourth

○ ESI gets the fifth

● The system call is made by running the command int 80h

● May still work on 64 bit architecture

Global main vs global _start

● You may see _start online as the global entry point to an asm program

• When you specify _start as the

entry point, you're essentially

bypassing the C runtime

startup code provided by the

compiler/linker.

• With _start, you're responsible

for setting up the environment

for your program, such as

initializing registers, setting up

the stack

• When you specify main as the entry

point, you're relying on the C runtime

startup code provided by the

compiler/linker.

• The C runtime startup code handles

various initialization tasks such as

setting up the environment, initializing

global variables, parsing command-

line arguments (if any), and

eventually calling your main function.

Words of wisdom

References

● Ivan Sekyonda’s slides

	Slide 1: x86 Assembly (cont.)
	Slide 2: Addressing Modes
	Slide 3: Immediate to register
	Slide 4: Register to register
	Slide 5: Register indirect to register
	Slide 6: Memory to register
	Slide 7: Immediate to memory
	Slide 8: Immediate to register indirect
	Slide 9: Summary of addressing formats
	Slide 10: Example
	Slide 11: Example
	Slide 12: Addressing formats not allowed
	Slide 13: Clearing bits
	Slide 14: Setting bits
	Slide 15: Shift instructions
	Slide 16: SHL/SAL
	Slide 17: SHR vs SAR
	Slide 18: Rotate instructions
	Slide 19: ROL vs RCL and ROR vs RCR
	Slide 20: Control Instructions
	Slide 21: String instructions
	Slide 22: NASM pseudo instructions
	Slide 23: NASM pseudo instructions (cont.)
	Slide 24: Endianness
	Slide 25: Ascii
	Slide 26: Privilege mode
	Slide 27: System call
	Slide 28: System call (cont.)
	Slide 29: Syscall “write” example
	Slide 30: File descriptors
	Slide 31: Common system calls
	Slide 32: Hello world example
	Slide 33: Hello world example with computed string length
	Slide 34: Syscall on 32-bit
	Slide 35: Global main vs global _start
	Slide 36: Words of wisdom
	Slide 37: References

