gdb

CMSC 313
Raphael Elspas

UMBC

Tools In this class

e Our development environment will be the GL server - make sure that you
check that your codes runs on this server.

Assembler: “nasm”. This is an assembler for x86-64 architecture

We'll be using gcc for linking. gcc is a full compiler like g++ but for C.
There is a linker inside of gcc called “Id”

We will use gdb for debugging

UMBC

Steps for assembling

e Once you have written your assembly, assemble your code:

nasm —f elf64 assembly_file.asm

e nasm is our assembler.
e -felf64 chooses the output format. We will assemble to an elf executable

object file with 64-bit values and operations.
e assembly file.asm is your assembly code.

UMBC

Steps for linking

e Once you have assembled your code, use the following to link your code

gcc —m64 —o executable _name object_file.o

e gcc includes our linker “ld”

e -mo64 forces 64 bit values and operations.

e -0 executable name specifies that you want to call your executable
“executable _name”

e object_file.o is the name(s) of the file(s) you'd like to link.

UMBC

Running program

e Use a “./” before the name of the executable to run your program

Jexecutable name

UMBC

Gdb

e (Gdb is a tool for inspecting the memory, registers and flags during the runtime
of a program with the purpose of debugging

UMBC

Running gdb

e To run gdb, use the command:

gdb executable _name

e (gdb is our debugging tool
e executable _name is our program we assembled and linked

¥ UMBC

gdb

e Gdb looks like this:

[relspas@linux3 ~/nasm] gdb test

GNU gdb (GDB) Fedora Linux 13.2-3.fc38

Copyright (C) 2823 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty"” for details.

This GDB was configured as "x86_64-redhat-linux-ghu".

Type "show configuration” for configuration details.

For bug reporting instructions, please see:

Find the GDB manual and other documentation resources online at:
< >

For help, type "help”.

Type "apropos word" to search for commands related to "word"...
Reading symbols from

(gdb) ||

e Prompt at the bottom allows us to run commands

UMBC

Simple gdb commands

e The commands below are listed as <shorthand>(longhand). Either
can be used as commands in gdb

e h (help) — starting point to find new commands

e disassemble (disas) — see assembly instructions at debug point

e b <label/line number> (break <label/line number>) — set a
breakpoint in your code so that you can inspect execution at that
point during runtime while debugging.

e I (run) —runs your program and pauses at breakpoints

e exit— exists gdb

UMBC

Break points

e break main — will break at label main
e Break *0x401115 — will break at instruction address 0x401115.
Use an asterisk to identify you are specifying an address.

¥ UMBC

Registers, disassembly

e To see registers use “info registers” or “i r”
e To see disassembly use “disassemble” or
“disas” with an optional address to inspect

(gdb) disas

Dump of assembler code for function main:

= <+@>:
<+7>:
<+12>:
<+14>:
End of assembler dump.

in main ()

@xd

exdedeed
ex4e3edd
ox7fffffffe278
ex7fffffffe268
ex1
Ox7fffffffeled
ex7fffffffelds
oxe
ex7ffff7fcede@
ex7fFfFffffdeb@
ex2e3

ox1

oxe
ex7ffff7ffdeee
ex4e3edd
ex40111c

@x246

ox33

@x2b

oxe

exe

oxe

exe

»DWORD PTR ::0x404004

3

DWORD PTR 1 @x424008,

13

4218692

4210240
1408737488347768
148737488347752
1
ex7Fffffffele@
ex7Fffffffelds
e
148737353936352
148737488346720
515

1

e
148737354125312
4210240
0x40111c <main+12>
[PF ZF IF]

51

LE

e

e
e
e

¥ UMBC

Permanent registers and disassembly

<_fini+l>
<_fini+d>

“‘Ctrl+x”, then “a” to exit graphical interface e

e ‘layout reg” for disassembly and registers [RNEEN. .

e “layout asm” for disassembly '

e “focus reg” to switch to register pane e

e “focus asm” to switch to disassembly pane — [EEEEESEEE

e “focus cmd” to switch to command line pane D R
o

BYTE PTR [r=x]
BYTE PTR [r=x],
BYTE PTR [r=x],
BYTE PTR [r=x]
BYTE PTR [r=]

(gdb)

Display all 197 possibilities? (y or n)

(gdb) layout asm

(gdb) layout reg

(gdb) b main

Note: breakpoint 1 also set at pc

Breakpoint 2 at

(gdb) r

The program being debugged has been started already.
Start it from the beginning? (y or n) yStarting program:

;

;

2

[Thread debugging using libthread_db enabled]
Using host libthread _db library *

in main ()

W UMBC

Syntax flavor
e By default AT&T syntax is displayed

(gdb) disas
Dump of assembler code for function main:
=> <+0>:
<+8>:
End of assembler dump.

e To switch to Intel syntax use the gdb command:

set disassembly-flavor intel

e To make it persistent for every run, write that line to the file: ~/.gdbinit

UMBC

Step through instructions

The gdb command stepi is short for step instruction

stepi (or si for short) executes only one instruction at a time

This allows you to closely examine the effects of each individual instruction on
the program's state, including changes to memory and registers.

Equivalent to “step into”

nexti (or ni for short) will also execute the next instruction, but if a subroutine
Is reached, the subroutine will be executed in one step.
nexti iIs equivalent to “step over”

UMBC

Viewing memory

e Use the command x (stands for examine)

x/[count][format][size] address

e count: Specifies the number of units to display.
e format: Specifies the format of the data to be displayed.
e size: Specifies the size of each unit.

W UMBC

Viewing memory

Number of
elements of size
given by “size
specifier”

x/[count][format][size] address

-+ c o X

(7))

hexadecimal
Signed decimal
Unsigned decimal
Floating point
String

Machine instruction

Q@ s - T

1 byte

2 bytes
4 bytes
8 bytes

UMBC

Viewing memory examples

e Examine 10 4-byte segments of memory starting at address 0x1000 in

hexadecimal format:
(gdb) x/10wx ©x1000

e Examine 5 floating-point numbers starting at address 0x2000:

(gdb) x/5f 0x2000

e Examine a null-terminated string starting at address 0x3000:

e Examine 12 1-byte segments as decimal from a label:

¥ UMBC

Some wisdom

everything is

open source, 1if

you can read assembly

UMBC

References

e |van Sekyonda’s slides

	Slide 1: gdb
	Slide 2: Tools in this class
	Slide 3: Steps for assembling
	Slide 4: Steps for linking
	Slide 5: Running program
	Slide 6: Gdb
	Slide 7: Running gdb
	Slide 8: gdb
	Slide 9: Simple gdb commands
	Slide 10: Break points
	Slide 11: Registers, disassembly
	Slide 12: Permanent registers and disassembly
	Slide 13: Syntax flavor
	Slide 14: Step through instructions
	Slide 15: Viewing memory
	Slide 16: Viewing memory
	Slide 17: Viewing memory examples
	Slide 18: Some wisdom
	Slide 19: References

