
gdb
CMSC 313

Raphael Elspas



Tools in this class

● Our development environment will be the GL server - make sure that you 

check that your codes runs on this server.

● Assembler: “nasm”. This is an assembler for x86-64 architecture

● We’ll be using gcc for linking. gcc is a full compiler like g++ but for C.

● There is a linker inside of gcc called “ld”

● We will use gdb for debugging



Steps for assembling

● Once you have written your assembly, assemble your code:

● nasm is our assembler.

● -f elf64 chooses the output format. We will assemble to an elf executable 

object file with 64-bit values and operations.

● assembly_file.asm is your assembly code.

nasm –f elf64 assembly_file.asm



Steps for linking

● Once you have assembled your code, use the following to link your code

● gcc includes our linker “ld”

● -m64 forces 64 bit values and operations.

● -o executable_name specifies that you want to call your executable 

“executable_name”

● object_file.o is the name(s) of the file(s) you’d like to link.

gcc –m64 –o executable_name object_file.o



Running program

● Use a “./” before the name of the executable to run your program

./executable_name



Gdb

● Gdb is a tool for inspecting the memory, registers and flags during the runtime 

of a program with the purpose of debugging



Running gdb

● To run gdb, use the command: 

● gdb is our debugging tool

● executable_name is our program we assembled and linked

gdb executable_name



gdb

● Gdb looks like this:

● Prompt at the bottom allows us to run commands



Simple gdb commands

● The commands below are listed as <shorthand>(longhand). Either 

can be used as commands in gdb

● h (help) – starting point to find new commands

● disassemble (disas) – see assembly instructions at debug point

● b <label/line number> (break <label/line number>) – set a 

breakpoint in your code so that you can inspect execution at that 

point during runtime while debugging.

● r (run) – runs your program and pauses at breakpoints

● exit – exists gdb



Break points

● break main – will break at label main

● Break *0x401115 – will break at instruction address 0x401115. 

Use an asterisk to identify you are specifying an address.



Registers, disassembly

● To see registers use “info registers” or “i r”

● To see disassembly use “disassemble” or 

“disas” with an optional address to inspect



Permanent registers and disassembly

● “layout reg” for disassembly and registers

● “layout asm” for disassembly

● “focus reg” to switch to register pane

● “focus asm” to switch to disassembly pane

● “focus cmd” to switch to command line pane

● “Ctrl+x”, then “a” to exit graphical interface



Syntax flavor

● By default AT&T syntax is displayed

● To switch to Intel syntax use the gdb command:

● To make it persistent for every run, write that line to the file: ~/.gdbinit

set disassembly-flavor intel



Step through instructions

● The gdb command stepi is short for step instruction

● stepi (or si for short) executes only one instruction at a time

● This allows you to closely examine the effects of each individual instruction on 

the program's state, including changes to memory and registers.

● Equivalent to “step into”

● nexti (or ni for short) will also execute the next instruction, but if a subroutine 

is reached, the subroutine will be executed in one step.

● nexti is equivalent to “step over”



Viewing memory

● Use the command x (stands for examine)

● count: Specifies the number of units to display.

● format: Specifies the format of the data to be displayed.

● size: Specifies the size of each unit.

x/[count][format][size] address



Viewing memory

x/[count][format][size] address

Size specifier

Size 

specifiers

Size of 

segment

b 1 byte

h 2 bytes

w 4 bytes

g 8 bytes

Format specifier

specifiers displayed

x hexadecimal

d Signed decimal

u Unsigned decimal

f Floating point

s String

i Machine instruction

Count

Number of 

elements of size 

given by “size 

specifier”



Viewing memory examples

● Examine 10 4-byte segments of memory starting at address 0x1000 in 

hexadecimal format:

● Examine 5 floating-point numbers starting at address 0x2000:

● Examine a null-terminated string starting at address 0x3000:

● Examine 12 1-byte segments as decimal from a label:

(gdb) x/10wx 0x1000

(gdb) x/s 0x3000

(gdb) x/5f 0x2000

(gdb) x/12bd &data_label



Some wisdom



References

● Ivan Sekyonda’s slides

● https://en.wikipedia.org/wiki/FLAGS_register

● http://asmdebugger.com/

https://en.wikipedia.org/wiki/FLAGS_register
http://asmdebugger.com/

	Slide 1: gdb
	Slide 2: Tools in this class
	Slide 3: Steps for assembling
	Slide 4: Steps for linking
	Slide 5: Running program
	Slide 6: Gdb
	Slide 7: Running gdb
	Slide 8: gdb
	Slide 9: Simple gdb commands
	Slide 10: Break points
	Slide 11: Registers, disassembly
	Slide 12: Permanent registers and disassembly
	Slide 13: Syntax flavor
	Slide 14: Step through instructions
	Slide 15: Viewing memory
	Slide 16: Viewing memory
	Slide 17: Viewing memory examples
	Slide 18: Some wisdom
	Slide 19: References

