
x86 branches & subroutines
CMSC 313

Raphael Elspas

Flags review

● The EFLAGS register is a 32 bit register that stores flags bit by bit.

● The relevant ones in this class are:

○ OF – overflow, 1 if the previous operation produces an overflow

(POS+POS=NEG or NEG+NEG=POS). This flag is only triggered on

signed operations

○ CF – carry, 1 if the previous operation produces a carry out bit = 1. This

flag is only triggered on unsigned operations

○ ZF – zero, 1 if the previous operation produced a zero

○ SF – sign, 1 if the previous operation produced a negative number (first

bit is zero).

Flags cont.

● Operations may set, clear, modify, or test (view) a flag

● Some operations do not affect any flags

● RFLAGS is the 64 bit version of EFLAGS (32 bit)

Branch/Jump instructions

● x86 refers to all jumps and branches as jump instructions

● Unconditional jump is JMP

● Conditional jumps are called Jcc, which stands for “Jump condition”. cc

represents that there may be two letters as part of the conditional jump

command such as JGL or JLE

x86 jump (jcc)

Inst Sign

JL < Signed

JLE <= Signed

JB < Unsigned

JBE <= Unsigned

JG > Signed

JGE >= Signed

JA > Unsigned

JAE >= Unsigned

Inst

JE ==

JNE !=

JZ Previous == 0

JNZ Previous != 0

JS Previous < 0

JNS Preivious >= 0

More located here:

https://www.felixcloutier.com/x86/jcc

https://www.felixcloutier.com/x86/jcc

Compare

● X86 provides a way of testing if values are greater, less than or equal to

another without modifying either of the values. This is called a compare or

CMP.

● CMP computes the difference between the operands, like a SUB instruction,

but does not store the difference in a register. Instead, only the EFLAGS

register is updated with new flag values.

CMP example

MOV eax, 10
MOV ebx, 20
CMP eax, ebx ; Compare the values in EAX and EBX

; eax – ebx is computed
; SF = 1, ZF = 0, CF = 0, OF = 0

jle happy ; Jump to ‘happy’ if EAX <= EBX (ZF = 1 or SF != OF)
; branch taken

From https://www.felixcloutier.com/x86/jcc

https://www.felixcloutier.com/x86/jcc

JMP addressing

● Jumps can use absolute addressing or relative addressing

● An absolute address is a specific address
○ The value can be a label or in a register

○ Actual number is computed by the assembler

● A relative address is a displacement off of the value in the RIP register
○ Assembler computes address from offset

JMP addressing example

section .data
absolute_data dd 42 ; Absolute data value stored in a 4-byte integer

section .text
main:

; Relative addressing
mov eax, [ebp - 4] ; Load the value stored at [ebp - 4] into eax

; This is an example of relative addressing,
; accessing data relative to the base pointer (ebp)

; Absolute addressing
mov ebx, absolute_data ; Load the address of absolute_data into ebx
mov ecx, [ebx] ; Load the value stored at the address in ebx into ecx

; This is an example of absolute addressing,
; accessing data directly via its memory address

if/else example

● Convert the following to

if (x < y) {
columbus_sailed();

} else {
the_ocean_blue();

}

section .data
;declare x and y

section .text
MOV RAX, [x]
MOV RBX, [y]
CMP RAX, RBX
JGE else
columbus_sailed
JMP done

else: the_ocean_blue
done:

Note: the “if” will run if x < y. The “else” will run if x >= y. therefore, since we want

to jump to the else block, we will use the condition x >= y

While loop

● Convert the following to

while (i > 0) {
foo;

}

section .data
;declare i

section .text
loop: MOV RAX, [i]

CMP RAX, 0
JLE done
foo
JMP loop

done:

Note: We need an exit condition so that we can leave the loop. In the case of this

program, although we have a jump instruction to done, we never reach it since “i”

doesn’t change.

Loop over array

● You can declare an array of

values by using commas in

the .data section

● There is something wrong

with this code. Use gdb to

figure out what is wrong

and suggest a fix

● loop keyword automatically

decrements rcx by 1 and

will jump to given address

as long as rcx != 0

section .data
arr dw 2,3,4,5
len equ ($ - arr)/2

section .bss
buffer resb 1

section .text
global main

main: mov rbx, arr ; Load address of the message
mov ecx, len ; load value of length

loop_print:
; convert from int to ascii
mov ax, word [rbx]
add al, '0'
mov [buffer], al

; setup syscall
mov rsi, buffer ; address of ascii char
mov rdi, 1 ; File descriptor 1 (stdout)
mov rdx, 1 ; Length of the element
mov rax, 1 ; Syscall number for sys_write
syscall ; Invoke syscall to write the message

; handle loop iteration
add rbx, 2
loop loop_print

; exit syscall
mov rax, 60
mov rdi, 0
syscall

Loop over array

● The rcx register gets

clobbered (trash valued)

by the write syscall

● We need to store rcx

before syscall and then

reintroduce it after.

● We can use push and

pop to store rcx and then

retrieve it later

section .data
arr dw 2,3,4,5
len equ ($ - arr)/2

section .bss
buffer resb 1

section .text
global main

main: mov rbx, arr ; Load address of the message
mov ecx, len ; load value of length

loop_print :
; convert from int to ascii
mov ax, word [rbx]
add al, '0'
mov [buffer], al

; setup syscall
push rcx
mov rsi, buffer ; address of ascii char
mov rdi, 1 ; File descriptor 1 (stdout)
mov rdx, 1 ; Length of the element
mov rax, 1 ; Syscall number for sys_write
syscall ; Invoke syscall to write the message
pop rcx

; handle loop iteration
add rbx, 2
loop loop_print

; exit syscall
mov rax, 60
mov rdi, 0
syscall

We’ll see later that RAX,

RCX, RDX, & R8-R11 can

be modified by subroutine

mov rsi, buffer
mov rdi, 1
mov rdx, 1
mov rax, 1
syscall

rcx ; ?? clobbered

Stack

● The stack is a memory data structure to store

data as needed

● Follows LIFO pattern: Last in, first out

● The top of the stack grows towards lower

memory addresses

● RBP points to base of stack

● RSP points to top of stack

0x0000

0x0008

…

0xffe0

0xffe8

0xfff0

0xfff8

Stack grows

towards lower

memory

locations

rsp

rbp

Push operation

● RSP gets decremented by the size of the operand

● Operand is copied into [RSP]

0x0000

0x0008

…

0xffe8

0xfff0

0xfff8

rsp

rbp

0x0000

0x0008

…

0xffe8 0x5

0xfff0

0xfff8

rsp

rbp

before after

push rax ; rax = 0x5

Pop operation

● Opposite of Push operation

● [RSP] is copied into operand

● RSP is incremented by the size of the operand

0x0000

0x0008

…

0xffe8

0xfff0

0xfff8

rsp

rbp

0x0000

0x0008

…

0xffe8 0x5

0xfff0

0xfff8

rsp

rbp

before after

pop rax ; rax = <random>
; rax = 0x5

Push and Pop

● You don’t always have to push and

pop values into the same register

push rax
; do something
pop rsi

Subroutine instructions

● Subroutine is the function equivalent in x86

● CALL label is used to call subroutine

○ Increments RIP

○ PUSHes RIP onto the stack

○ Jumps to the label

● RET returns from a subroutine

○ POPs the top of the stack into RIP

○ Execution proceeds from the location saved at

RIP

A subroutine that is

CALLed Always

needs a RET!

foo: ; this is just a label
mov rax, 5

bar: ; this is a subroutine
mov rax, 5
ret

Subroutine stack during CALL

● Instruction after rip is saved on stack during a subroutine call

● Addresses are 64bit, so 8 bytes will be pushed on the stack

0x0000

0x0008

0x0010

…

0xffe8

0xfff0

0xfff8

rsp

rbp

0x0000

0x0004

…

0xffe8 0x0000 0010

0xfff0

0xfff8

rsp

rbp

before after

rip rip now points

to subroutine

Subroutine stack during ret

● After RET, execution continues with where the head of the stack is

pointing and rsp is incremented by the address size (64 bits)

0x0000

0x0008

0x00010

…

0xffe8

0xfff0

0xfff8

rsp

rbp

0x0000

0x0008

…

0xffe8 0x0000 0010

0xfff0

0xfff8

rsp

rbp

before after

rip

rip is pointing

to subroutine

Subroutines with Parameters and Return

● Functions can have parameters:

● In Assembly, CALL does not specify parameters and RET does not specify

return value. The developer must handle allocating parameters and return

value to either registers or the stack.

● The developer also must handle not overwriting registers during a function

call.

int func(int a, int b){

}

Calling convention

● The Caller is the part of code that calls a

subroutine.

● The Callee is the function that gets called

● The calling convention is a set of rules governing

use of subroutines and which parts the caller is

responsible for and which parts the callee is

responsible for. These can include which registers

are overwritten by whom, who sets up and takes

down the stack, how parameters are setup, and how

return values work.

main:
Mov esi, 5
Call add_one
Add ebx, eax

add_one:
inc esi
mov eax, esi
ret

Example:

caller

callee

Calling convention – saved regs

● Caller-saved registers must be saved by the caller before a subroutine call if

they will be overwritten. The caller should expect those registers to be

clobbered

● A caller can expect that callee-saved registers will not change after a

subroutine returns. If a subroutine uses them, the previous value must be

saved before that register is used, and then reset to the old value when the

subroutine is ready to return.

Caller saved Callee saved

RAX, RCX, RDX RBX, RBP, RDI, RSI, RSP

R8, R9, R10, R11 R12, R13, R14, R15

Parameters and Return value

● The return value is always returned in the RAX register

● Parameters can be stored in 2 ways: the 32 bit method or the 64 bit method.

x86 user subroutine, x86-32 c declaration x86-64 c declaration

The 32 bit method uses the stack to store

parameters. The caller pushes values on to

the stack, in reverse order, and the callee

can access them by looking at values

“below” the base pointer

The 64 bit method places the

parameters 1-6 in the registers RDI,

RSI, RDX, RCX, R8, R9, and all

parameters after that get pushed to the

stack.

Stack maintenance

● When a subroutine is called, a new stack is created for local variables to be

created and only exist during the runtime of that stack.

● To create a new stack, the RBP and RSP must be updated.

● The following are done by the callee:

○ Push old RBP on to the stack

○ RBP is set to RSP

Old stack

Rip, rbp, &

parameters

new stack

subroutine:
push rbp ; keep track of old rbp
mov rbp, rsp ; update rbp to new stack base

pop rbp ; get back old rbp
ret

Stack setup

0x0000

0x0008

0x0010

0xffe0

0xffe8

0xfff0

0xfff8

rsp

rbp

0x0000

0x0008

0x0010

…

0xffe0 0xfffc

0xffe8 0x0010

0xfff0

0xfff8

Rsp, rbp

before
after

rip

(Old rip +8)

(Old rbp)

Done by callee

Automatic by “call”

Old stack

key

Stack setup with pushed parameters

● Let’s say there are 2 parameters using the 32-bit

parameter method

Rsp, rbp

0x0000

0x0008

0x0010

…

0xffd8 0xfffc

0xffe0 0x0010

0xffe8 Param 1

0xfff0 Param 2

0xfff8

Rsp, rbp

before
after

rip

(Old rip +8)

(Old rbp)

0x0000

0x0008

0x0010

…

0xffd8

0xffe0

0xffe8

0xfff0

0xfff8

Callee setup

Automatic by “call”

Caller setup

Old stack

key

Passing and accessing parameters (pushed method)

● Although this convention is normally used on 32 bit, this strategy also works

on 64 bit.

main:
push rax ;pass 2nd parameter
push rbx ;pass 1st parameter
call subroutine
pop rbx ;clean up stack
pop rax ;clean up stack

subroutine:
push rbp ;save base pointer
mov rbp, rsp ;setup new base pointer

mov rax, [rbp+16] ;access 1st parameter
mov rcx, [rbp+24] ;access 2nd parameter

pop rbp ; restore old base pointer
ret

Note: when you want to access

parameters, you can offset from

the base pointer:

RBP+16 (= RBP+0x10) will get the

first parameter (skipping over

stored RIP and RBP)

0xffd0 0xfffc

0xffe8 0x0010

0xffe0 Param 1

0xfff8 Param 2

Rsp,

rbp
(Old rip +8)

(Old rbp)

References

● Ivan Sekyonda’s slides

● https://en.wikipedia.org/wiki/X86_calling_conventions

https://en.wikipedia.org/wiki/X86_calling_conventions

	Slide 1: x86 branches & subroutines
	Slide 2: Flags review
	Slide 3: Flags cont.
	Slide 4: Branch/Jump instructions
	Slide 5: x86 jump (jcc)
	Slide 6: Compare
	Slide 7: CMP example
	Slide 8: JMP addressing
	Slide 9: JMP addressing example
	Slide 10: if/else example
	Slide 11: While loop
	Slide 12: Loop over array
	Slide 13: Loop over array
	Slide 14
	Slide 15: Stack
	Slide 16: Push operation
	Slide 17: Pop operation
	Slide 18: Push and Pop
	Slide 19: Subroutine instructions
	Slide 20: Subroutine stack during CALL
	Slide 21: Subroutine stack during ret
	Slide 22: Subroutines with Parameters and Return
	Slide 23: Calling convention
	Slide 24: Calling convention – saved regs
	Slide 25: Parameters and Return value
	Slide 26: Stack maintenance
	Slide 27: Stack setup
	Slide 28: Stack setup with pushed parameters
	Slide 29: Passing and accessing parameters (pushed method)
	Slide 30: References

