
C functions
CMSC 313

Raphael Elspas

Calling a C function from assembly

● We can call a C function using the C Calling convention shown in the table

below:

● These functions can be written by us or be built in (like printf, scanf, etc.)

● Our assembly code would be the caller, so we would need to follow caller rules

x86-64 C declaration

The 64 bit method places the

parameters 1-6 in the registers RDI,

RSI, RDX, RCX, R8, R9, and all

parameters after that get pushed to the

stack.

Main function

● For the main subroutine to call another function, main itself needs to be setup

as subroutine

● This means main needs to:

○ Setup base pointer in the beginning

○ Return at the end

main:
push rbp
mov rbp, rsp
...
pop rbp
ret

Extern
● In the assembly caller, we need to

use the keyword “extern” to alert the

linker to look for the function outside

of the current assembly file

● We also need to use this keyword if

we want to call an assembly

subroutine in a different file

● Example: the left asm code calls the

C function below with the following

parameters:

section .data
format db "Hello, world! I like %d", 0
num dq 42

section .text
extern printf
global main

main:
push rbp ; note that if you use c calls
mov rbp, rsp ; you have to setup main like

; subroutines with rbp and rsp

; Pass the format string to printf
mov rdi, format
mov rsi, [num]
call printf

; Exit the program
pop rbp ; note exiting program can also
mov rax, 0 ; be done with setting rax and
ret ; then ret

printf(“Hello, world! I like %d”, 42)

Call a subroutine from another asm file

● We have to use extern in the caller, and global in the callee

section .text
global subroutine

subroutine:
; takes one argument in rdi reg
; print argument
mov rax, 1 ; Syscall number for write
mov rdi, 1 ; File descriptor 1 (stdout)
; rsi already set, Pointer to the argument
; rdx already set, Length
syscall

ret ; Return from subroutine

section .data
msg db 'Hello, world! I like', 0
len equ $ - msg

section .text
global main

main:
; Call the subroutine in Program B
mov rsi, msg ; Argument
mov rdx, len
call subroutine

; Exit the program
mov rax, 60 ; Syscall number for exit
xor rdi, rdi ; Return 0
syscall

extern subroutine

File B
File A

Call c file from asm

● You have an assembly file hello.asm, and a c file, world.c, which you want

to link.

● You can do the following in the terminal:

$ nasm –f elf64 hello.asm
$ gcc –c world.c
$ gcc –m64 –o helloworld hello.o world.o

This step

compiles a

C file into an

object file.

C and C++ differences

Feature C C++

Programming Paradigm Procedural Multi-paradigm (procedural, object-oriented, generic)

Header Files .h extension .h or .hpp extension

Function Overloading Not supported Supported

Classes and Objects Not supported Supported

Inheritance Not supported Supported

Encapsulation Achieved through structs Achieved through classes

Namespace Not supported Supported

Templates Not supported Supported

Exception Handling Not supported Supported

Standard Libraries Limited standard library Standard Template Library (STL) and additional features

Memory Management
Manual memory management

using malloc() and free()

Supports manual and automatic memory management;

features like new and delete

Usage

System programming,

embedded systems, low-level

programming

Application development, game development, systems

programming

Datatypes

Type Storage size Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes
-32,768 to 32,767 or -2,147,483,648 to

2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 4 or 8 bytes -9223372036854775808 to 9223372036854775807

unsigned long 4 or 8 bytes 0 to 18446744073709551615

Note that some datatypes

such as an int or long

may have variable

dimensions since they

depend on the architecture

that is using that code.

Fixed width types

● You can make sure your datatype has a certain dimension by using a fixed

width data type. To use these you need to use include <stdint.h>.

Type Storage size

int8_t, uint8_t 1 byte

int16_t, uint16_t 2 byte

int32_t, uint32_t 4 byte

int64_t, uint64_t 8 bytes

Boolean

● No boolean type available by default.

● You have to include a header: include <stdbool.h>

● You use the type: bool

#include <stdbool.h>
bool israining = true;
if (isRaining){

useUmbrella();
}

Ternary Statement

● Aa ternary is a shorthand for an else-if statement

● The format is (condition) ? (result if true) : (result if false)

int larger = x > y ? x : y

Binary and logical operators

Operator symbol Meaning

>> Right shift

<< Left shift

| Bitwise or

& Bitwise and

^ Bitwise xor

&& Logical and

|| Logical or

Printf

● To print text to stdout, use printf.

● Syntax: printf(format, arg1, arg2, ….)

● Example:

● Format is a string containing content to be printed, but also contains

conversion specifiers.

int num = 3
printf("value = %d\n", num)

Printf format specifiers

Operator symbol Meaning

%d Print integer as decimal

%u Print integer as unsigned number

%s Print string

%f Print float

%x Print integer as hexadecimal

%c Print integer as ascii character

%p Print pointer as hex

Scanf

● Use scanf to store input from the user

● Syntax: scanf(format, arg1, arg2, ….)

● Example:

● Specifiers are similar to those used in printf

● Format is a string containing content to be printed, but also contains

conversion specifiers specifying how the data taken in will be interpreted. The

values are stored in the args input.

int num;
printf("input a number:");
scanf("%d", &num);

Files in c

● Open a file with fopen(), close a file with fclose().

● Use FILE * datatype to capture handle to open file

● Fopen() requires the way the file is being opened.

○ “r” for read only

○ “w” for creating the file and writing, deleting existing file

○ “a” for appending to file

FILE *myFile
myFile = fopen(“bob.txt”,”r”);
If (myFile == NULL){
/*handle error*/

}

Arrays

● Array syntax follows the pattern:

● What is the value at arr[1] in the example below?

● It is undefined, and will have a garbage value

int arr[10];
arr[0] = 14;
arr[3] = -3;

type array_name[size]

Strings

● Strings in C are arrays of type char.

● In the background what is happening is:

char str[30] = "hello";

char str[0] = 'h';
char str[1] = 'e';
char str[2] = 'l';
char str[3] = 'l';
char str[4] = 'o';
char str[5] = 0; //null character

Struct

● C++ has objects to store structured data and to group different datatypes

together.

● C uses structs

● Where struct is the keyword, tag names the struct, member#_declaration are

variable declarations which define the members of the struct

struct tag {
member1_declaration;
member2_declaration;
member3_declaration;

…
memberN_declaration;

};

Struct example

● We can access members of a struct with “.”

● We can initialize values in a struct in two ways:

struct point {
int x; //x coordinate
int y; //y coordinate

};

struct point p1;
p1.x = 5;
p1.y = 6;

struct point {
int x; //x coordinate
int y; //y coordinate

};

struct point p1 = {5,6};

Struct with array members

● Defined the same way an array is defined

● We might define a particle like this:

struct particle
{

double p[3]; // Position
double v[3]; // Velocity
double a[3]; // Acceleration
double radius;
double mass;

};

Array of struct

● Creating an array of structs first requires a struct definition, and then a

declaration of the array

#define n 3

struct particle
{

double p[3]; // Position
double v[3]; // Velocity
double a[3]; // Acceleration
double radius;
double mass;

};

struct particle particles[n];

Dynamic memory functions

● void *malloc(size_t nrBytes);

○ Returns pointer to uninitialized memory of size nrBytes or NULL if request cannot

be made

● void *calloc(int nrElements, size_t nrBytes);

○ Same as malloc, but memory is initialized to 0.

○ Parameters divided into number of elements, and element size.

● void free(void *p);

○ Deallocates memory pointed to by p

● void * is a generic pointer that can point to any kind of data

● size_t is an unsigned integer type that should be used instead of int when

identifying the size of something

Pointer notation

● A pointer is described with a *

● The dereference operator is also a *

● The opposite of dereferencing, or “find the address of” uses the operator “&”

Variable length arrays

● In C99, you can create variable length arrays.

● This will be allocated on the stack:

● In all versions of C, you can create variable length arrays with malloc()

● arr becomes a pointer to a spot in memory that you can dereference.

● You need to free() the memory at the end of the program.

● Use sizeof() to allocate correct number of bytes per datatype

int n = 5
int arr[n]

int *arr = malloc(sizeof(int)*5);
...
free(arr)

Structs with variable length array members

● Use pointers as members and malloc them when you instantiate your struct.

● What does the memory diagram look like for this?

struct store{
int *employee_ids; //array of ints

};
struct store stores[2];
stores[0].employee_ids = malloc(sizeof(int)*100);
stores[1].employee_ids = malloc(sizeof(int)*50);

Memory diagram

● Use pointers as members and malloc them when you instantiate your struct.

struct store{
int *employee_ids; //array of ints

};
struct store stores[2];
stores[0].employee_ids = malloc(sizeof(int)*100);
stores[1].employee_ids = malloc(sizeof(int)*50);

*employee_ids[0]stores *employee_ids[1]

…

…

50 elements

100 elements

Arrays of Strings

● Under the hood is an array of arrays

● We can use several notations to describe an array of strings, since a string is

an array itself.
char **names = malloc(sizeof(char *) * 3)
Names[0] = "asdf";

char *names[] = {"asdf", "asdf2"};

char names[][] = {"asdf", "asdf2"};
Will fail, multidimensional

arrays must have bounds

for all dimensions but the

first

Also called a double

pointer

typedef

● You can use the following syntax for struct shorthand so you don’t have to

use “struct” keyword before every usage.

typedef struct {
int x, y;

} Point;

Point a;
a.x = 5;
a.y = 7;

struct Point{
int x, y;

};

struct Point a;
a.x = 5;
a.y = 7;

Instead of

Consider struct vs pointer to struct

● I have a cookie struct which contains a flavor string and a weight in grams

typedef struct{
char *flavor;
int weight_in_grams;

} cookie;
cookie cookie1;
cookie *cookie2 = malloc(sizeof(struct cookie));

char *flavor
int weight_in_grams

cookie1 cookie2
char *flavor
int weight_in_grams

-> operator

● When accessing members of a struct, we use two operators:

operator behavior example

. (period) Access member of struct cookie1.flavor = “chocolate”
cookie1.weight_in_grams = 55

-> (arrow) Access member of pointer to struct cookie2->flavor = “chocolate”
cookie2->weight_in_grams = 55

typedef struct{
char *flavor;
int weight_in_grams;

} cookie;
cookie cookie1;
cookie *cookie2 = malloc(sizeof(struct cookie));

-> operator continued

● The -> operator technically means: dereference this struct, then access this

member.

● Therefore the following two are equivalent:

cookie2->flavor (*cookie2).flavor

cookie2
char *flavor
int weight_in_grams

=

Pass by reference or value

● When a variable is passed by value, a copy of itself is pushed to the stack.

● When a variable is passed by reference, a copy of it’s address is pushed to

the stack
Typedef struct{

int count;
char *type;

} cookiejar;

cookiejar jar = {5, "oats"}

addOne(cookiejar jar){
jar.count += 1;

}

addOne(jar)
//jar = {5, "oats"}

cookiejar jar = {5, "oats"}

addOne(cookiejar *jar){
jar->count += 1;

}

addOne(&jar)
//jar = {6, "oats"}

The copy passed in is changed The original is changed

Passed by value Passed by reference

References

● Stack overflow is your friend

	Slide 1: C functions
	Slide 2: Calling a C function from assembly
	Slide 3: Main function
	Slide 4: Extern
	Slide 5: Call a subroutine from another asm file
	Slide 6: Call c file from asm
	Slide 7: C and C++ differences
	Slide 8: Datatypes
	Slide 9: Fixed width types
	Slide 10: Boolean
	Slide 11: Ternary Statement
	Slide 12: Binary and logical operators
	Slide 13: Printf
	Slide 14: Printf format specifiers
	Slide 15: Scanf
	Slide 16: Files in c
	Slide 17: Arrays
	Slide 18: Strings
	Slide 19: Struct
	Slide 20: Struct example
	Slide 21: Struct with array members
	Slide 22: Array of struct
	Slide 23: Dynamic memory functions
	Slide 24: Pointer notation
	Slide 25: Variable length arrays
	Slide 26: Structs with variable length array members
	Slide 27: Memory diagram
	Slide 28: Arrays of Strings
	Slide 29: typedef
	Slide 30: Consider struct vs pointer to struct
	Slide 31: -> operator
	Slide 32: -> operator continued
	Slide 33: Pass by reference or value
	Slide 34: References

