CMSC 313 Spring 2024

Homework 4
due Monday, March 4, 11:59pm

Introduction: For HW4, you’ll be using a Logic Simulator to build cobinational circuits. The simu-
lator we’ll use in this class is Logisim-Evolution which you can download from:
https://github.com/logisim-evolution/logisim-evolution. There are download instructions on
the README.

You are provided a starting circuit file which has a framework which you will edit. This file contains
6 sub-circuits: FA, FourBitAdd, FourBitAddSub, SHL, SHR, & ALU, which you can see on the left
hand panel in Logisim.

A 7test vector” is a file used to test the boolean logic of a circuit in Logisim. Each circuit will have
a provided test-vector which you can use to check your work. If your circuit passes every test within
the test vector, you will get full points on that part. Grades will be assessed based on passing number
of tests on each circuit.

You shall submit a single file which is labeled “HW4_<your first name>_<your last name>.circ”.

Testing: Included in this assignment are test vector files. Each of the circuits you will create will
be tested with a different test vector. To test your circuit, first make sure you have opened (double
clicked) your selected circuit. Then select Simulate > Test Vector... after which you will need to
upload the vector file to test the specific circuit. Each circuit’s test vector provided is named after the
corresponding circuit with the trailing suffix “-test.txt”. For example, the ALU circuit’s test vector is
“ALU-test.txt” You will get full marks on that circuit if all tests pass. A grade will be given based on
the number of tests that pass.

Exercise 1. Create an 4-bit ripple adder/subtractor that adds or subtracts two binary numbers a =
asasaiag and b = bgbab1bg, and produces an output d = dsdad;dp.

a. (5 pts) Create a Full Adder. This circuit is named “FA” and has inputs {a, b, cin} and outputs
{s, cout}.

b. (10 pts) Create a 4-bit ripple adder by chaining together full adders from part a. This circuit
is named “FourBitAdd”. This 4-bit ripple adder should have inputs exactly {a[4], b[4], cin} and
outputs {s[4], cout, overflow} where [4] means that the input is a bus/bundle of width 4. The
output overflow is defined the same way 2’s complement overflow is explained in class. Hint: if as
and by are the same (both numbers are positive or both numbers are negative), and if s3 is different
from az (the answer has a different sign then one of the inputs), then overflow = 1 otherwise, overflow
=0.

c. (10 pts) Create a 4-bit ripple subtractor/adder by reusing the module from part b. This circuit
is named “FourBitAddSub”. The subtractor should perform 2’s complement addition a + b whenever
enable input en=0 and perform 2’s complement subtraction a —b whenever enabled input en=1. The
subtractor/adder has inputs exactly {a[4], b[4], en} and outputs {s[4], cout, overflow}.

Exercise 2. Create a Shift Left module and a Shift Right module in their own sub-circuits.

a. (5 pts) The Shift Left circuit shift all bits to the left by one. It performs the operation s = a<<1
given the input {a[4]} and output{s[4]}. The most significant bit should be truncated, and the new
unassigned bit in the least significant bit place shall be filled with a zero. This circuit is named “SHL”.


https://github.com/logisim-evolution/logisim-evolution

b. (5 pts) The Shift Right circuit shift all bits to the right by one. It performs the operation
s = a>>1 given the input {a[4]} and output{s[4]}. The least significant bit should be truncated,
and the new unassigned bit in the most significant bit place shall be filled with a zero. This circuit is
named “SHR”.

Exercise 3. (15 pts) Create a 4 operation 4-bit ALU that supports the following operations: Add,
Subtract, Shift Left and Shift Right for the op values 00, 01, 10, and 11 respectively. This circuit is
named “ALU”. The ALU has inputs {a[4], b[4], op[2]} and output {s[4], cout, overflow}.

op ‘ operation name action

00 | add s=a+b
01 | subtract s=a-b
10 | Shift Left s=a<<1
11 | Shift Right s=a>>1

The adder and subtractor should be implemented with the same FourBitAddSub subcircuit, don’t
use a separate subcircuit for the adder and subtractor logic. Also, the outputs {cout, overflow}
should only be enabled if the add or subtract operation is being used; otherwise, they should be set
to 0.



